Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Guo ShiRong x
Clear All Modify Search

Nitric oxide (NO), an endogenous signaling molecule in plants and animals, mediates responses to abiotic and biotic stresses. This study was conducted in a nutrient solution to investigate 1) the effects of exogenous sodium nitroprusside (SNP), an NO donor, on free proline (Pro) and protein content; and 2) the enzymes involved in Pro metabolism [pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (PDH)] in cucumber (Cucumis sativus) seedling leaves and roots under NaCl stress. The results showed that the increases in free Pro and protein were significantly higher in the 50 mm NaCl solution but highly significant with the addition of 100 μM SNP to the 50 mm NaCl solution for the entire treatment period. Moreover, leaves maintained higher levels of free Pro and protein content than roots throughout the experiments. The P5CS activity increased in the saline treatment compared with the control, and this increase was greater in the 50 mm NaCl + 100 μM SNP solution than in the other treatments. On the other hand, the PDH activity was inhibited under NaCl stress but the reduction in activity was greater in the 50 mm NaCl + 100 μM SNP solution than in the others. These findings suggest that Pro metabolism was significantly altered during the exogenously applied NO under salt stress and that this alteration prompted the accumulation of higher levels of free Pro, which, in turn, maintained the turgor in the cucumber seedlings and helped protect them from salt stress. Moreover, the toxic effects generated by 50 mm NaCl were partially overcome by the application of NO, which could be used as a potential growth regulator to improve plant salinity tolerance. Therefore, it was concluded that NO could alleviate salinity damage in cucumber seedlings by regulating Pro metabolism. Overall, the adverse effects of salt stress could be lessened by the exogenous application of NO to cucumber seedlings.

Free access

The chloroplast structural alteration and the photosynthetic apparatus activity of cherry tomato seedlings were investigated under dysprosium lamp [white light control (C)] and six light-emitting diode (LED) light treatments designated as red (R), blue (B), orange (O), green (G), red and blue (RB), and red, blue, and green (RBG) with the same photosynthetic photon flux density (PPFD) (≈320 μmol·m−2·s−1) for 30 days. Compared with C treatment, net photosynthesis of cherry tomato leaves was increased significantly under the light treatments of B, RB, and RBG and reduced under R, O, and G. Chloroplasts of the leaves under the RB treatment were rich in grana and starch granules. Moreover, chloroplasts in leaves under RB seemed to be a distinct boundary between granathylakoid and stromathylakoid. Granathylakoid under treatment B developed normally, but the chloroplasts had few starch granules. Chloroplasts under RBG were similar to those under C. Chloroplasts under R and G were relatively rich in starch granules. However, the distinction between granathylakoid and stromathylakoid under R and G was obscure. Chloroplasts under O were dysplastic. Palisade tissue cells in leaves under RB were especially well-developed and spongy tissue cells under the same treatment were localized in an orderly fashion. However, palisade and spongy tissue cells in leaves under R, O, and G were dysplastic. Stomatal numbers per mm2 were significantly increased under B, RB, and RBG. The current results suggested blue light seemed to be an essential factor for the growth of cherry tomato plants.

Free access

Soil sickness from the continuous cropping of cucumbers has become a major limiting factor for protected cucumber cultivation. The use of reasonable cropping systems and the employment of allelopathy between different crops are considered to be the major safe and effective measures for alleviating soil sickness. The objective of this study assessed the effects of garlic (Allium sativum L. cv. Yusuan No. 1)/cucumber (Cucumis sativus L. cv. Jinchun No. 4) relay intercropping on soil enzyme activities and the microbial environment in a continuous cropping regime. Cucumbers and garlic were selected and planted in plastic barrels. The following four treatments were included in the experiment: continuous cropping without crops (Cont), monoculture cucumbers (C), monoculture garlic (G), and the relay intercropping of garlic with cucumbers (CG). The results showed that relay intercropping with garlic promoted cucumber plant growth and attenuated damage caused by soil sickness. In comparison with the Cont treatment, the C treatment decreased soil urease, catalase, invertase, and phosphatase activities; by contrast, the CG treatment enhanced all soil enzyme activities. The C treatment resulted in lower numbers of soil bacteria and actinomycetes and a lower bacteria/fungi ratio, but there were a higher number of soil fungi than there were in the Cont treatment. However, the CG treatment increased the numbers of soil bacteria and actinomycetes as well as the bacteria/fungi ratio, and it decreased the number of soil fungi. In comparison with the Cont treatment, the C treatment reduced the microbial biomass carbon (MBC) and soil basal respiration (BSR) without affecting the metabolic quotient (qCO2), whereas the CG treatment increased all three variables. A polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed decreased bacterial community diversity and increased fungal community diversity in soil with the C treatment; the opposite trend was observed in the CG treatment. The results indicated that the relay intercropping of garlic with cucumbers improved soil enzyme activities and promoted the conversion of continuous cropping soil from a “fungal” type to a “bacterial” type. Additionally, relay intercropping altered the soil bacterial community structure, increased the bacterial diversity indices, and enriched the dominant bacterial populations in the soil. These mechanisms improved the soil microbial environment and effectively alleviated damage caused by soil sickness, thus promoting cucumber plant growth.

Free access

To examine whether spermidine (SPD) modifies plant antioxidant enzyme expression in response to short-term salt stress, cucumber (Cucumis sativus) seedlings were treated with NaCl in the presence or absence of SPD for 3 days. Compared with untreated control plants, free radical production and malondialdehyde content in leaves and roots increased significantly and plant growth was suppressed under 50 mm NaCl stress. Exogenous SPD sprayed on leaves at a concentration of 1 mm alleviated salinity-mediated growth reduction. Salt stress caused a consistent increase in soluble protein content, as well as peroxidase (POD) and superoxide dismutase (SOD) activities in cucumber seedlings. By native polyacrylamide gel electrophoresis, five POD isozymes were detected in cucumber seedling leaves, and seven in roots. We detected five SOD isozymes in leaves and four in roots, and two catalase (CAT) isozymes in leaves and two in roots. Our results indicate that salt stress induced the expression of POD and SOD isozymes in cucumber seedlings, but inhibited the expression of CAT isozymes in roots. Application of exogenous SPD further increased POD and SOD expression and activity, and led to the differential regulation of CAT in leaves and roots. These data show that antioxidant enzymes, especially POD and SOD, appear to protect cucumber seedlings against stress-related damage, and they appear to function as the molecular mechanisms underlying the response of cucumber seedlings to salinity. Moreover, SPD has potential to scavenge directly free radical and to alleviate growth inhibition and promote the activity and expression of antioxidant system enzymes in cucumber seedlings under short-term salt stress.

Free access

To examine whether 1 mm of spermidine (Spd) modifies plant ethylene production in response to short-term salt stress, cucumber (Cucumis sativus) seedlings were grown in nutrient solution with or without 75 mm NaCl stress for 3 days, and the leaves were sprayed with 1 mm Spd or water (control). We investigate the effects of the treatments on ethylene production, 1-aminocyclopropane-1-carboxylate (ACC) content, 1-(malonylamino) cycolpvopane-1-carboxylic acid (MACC) content, activities of 1-aminocyclopropane-1-carboxylate synthase (ACS), and 1-aminocyclopropane-1-carboxylate oxidase (ACO) and gene expression of acs2, aco1, and aco2 in the cucumber leaves. The results indicate that ethylene production was increased significantly under salt stress as did ACC and MACC content, the activities of ACS and ACO, and the transcriptional level of acs2, whereas the gene expression of aco1 and aco2 was somewhat decreased. However, exogenous Spd treatment depressed the content of ACC and MACC, ACS activity, and the level of acs2 transcripts in the leaves of salt-stressed cucumber. Although the activity of ACO and gene expressions of aco1 and aco2 increased by Spd, ethylene emission was inhibited. Our results suggest that application of exogenous Spd could reverse salinity-induced ethylene production by inhibiting the transcription and activity of ACS under salt stress. We conclude that exogenous Spd could modify the biosynthesis of ethylene to enhance the tolerance of cucumber seedlings to salt stress.

Free access

The use of grafted seedlings in vegetable crops has increased in recent years to enhance the resistance to biological and abiotic stresses, and improve yields. However, incompatibility restricts the wide application of grafting. In this study, two pumpkin (Cucurbita) cultivars, with great differences in grafting affinity and symbiotic affinity, were used as rootstocks and cucumber (Cucumis sativus) seedlings were used as the scion. The effects of compatibility or incompatibility on histological aspects, antioxidant enzyme activities, phenylpropanoid contents, and chlorophyll fluorescence were studied. The results showed that compatible graft combinations present a stronger resistance to the oxidative damage resulting from grafting and had relatively weak phenylpropanoid metabolisms. The results also indicated that the chlorophyll fluorescence levels of incompatible combinations were lower, except compared with the original fluorescence. Finally, a necrotic layer existed earlier in compatible graft combinations. These differences at the morphological, physiological, and cellular levels may govern compatibility and incompatibility, and may provide valuable information for determining the symbiotic affinity of grafted seedlings at an early stage.

Free access

Heat tolerance is considered to be an essential feature for cucumber (Cucumis sativus) production, and it has been suggested that higher antioxidant ability could prevent the oxidative damage in plants caused by high-temperature stress. We aimed to investigate whether the application of exogenous spermidine (Spd) increases antioxidant activities and, therefore, elevates the heat tolerance of cucumber. Cucumber seedlings (cv. Jinchun No. 4) showing moderate heat tolerance were grown in climate chambers to investigate the effects of exogenous Spd (1 mm) foliar spray treatment on the activities and isozyme levels of antioxidative enzymes under both high-temperature stress 42/32 °C (day/night) and normal temperature 28/18 °C (day/night). On high-temperature stress, the activities of superoxide dismutase and ascorbate peroxidase were significantly reduced; the catalase activity was initially lower and then increased, whereas the peroxidase activity was initially higher and then decreased. The levels of these isozymes also changed differently. On treatment with exogenous Spd, the activities of these antioxidant enzymes were noticeably enhanced, and the isozyme zymogram expression had some changes. It was concluded that foliar spray with Spd effectively improved the total antioxidant ability of cucumber seedlings and, therefore, enhanced the tolerance of the plants to high-temperature stress.

Free access

We investigated the effects of exogenous spermidine (Spd) on the carbohydrate, nitrogen (N), and endogenous polyamine status of tomato (Solanum lycopersicum) seedlings exposed to high-temperature stress [38/28 °C (day/night)]. High-temperature stress reduced the contents of pyruvate and succinate and inhibited plant growth. The application of exogenous Spd alleviated the inhibition of plant growth induced by high temperature, and also led to an increase in pyruvate, citrate, and succinate levels. High temperature markedly increased the NH4 +-N content and reduced the activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate dehydrogenase (GDH). Spd significantly alleviated the negative effects on NH4 +-N assimilation induced by high-temperature stress. Moreover, Spd significantly increased the activities of NR and GDH in the high-temperature-stressed tomato leaves. In contrast, Spd application to high-temperature-stressed plant leaves counteracted high-temperature-induced mRNA expression changes in N metabolism. Spd significantly upregulated the transcriptional levels of NR, nitrite reductase, GS, GDH, and glutamate synthase (GOGAT). In addition, exogenous Spd significantly increased endogenous polyamines. These results suggest that Spd could improve carbohydrate and N status through regulating the gene expression and activity of key enzymes for N metabolism, thus confers the tolerance to high temperature on tomato seedlings.

Free access