Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Gregory Peck x
Clear All Modify Search

In the Mid-Atlantic, mineral nitrogen (N) fertilizers are applied in high-density apple (Malus ×domestica Borkh.) orchards to increase tree vegetative growth and achieve earlier fruiting. However, when applied in excess of plant needs, N fertilizer applications are an unnecessary expense and may lead to N leaching and groundwater pollution. Therefore, it is necessary to develop orchard fertilization programs that simultaneously provide adequate crop nutrition and minimize N loss into the environment. Nitrogen was applied in each of 3 years to newly planted ‘Red Delicious cv Schlect’/‘M.26’ trees at 67 kg N/ha/year in six fertilizer treatments: 1) two equal applications of granular calcium nitrate [Ca(NO3)2]; 2) chicken litter compost; 3) yardwaste compost; 4) a combination of chicken litter compost and granular Ca(NO3)2 with equal amounts of N from each fertilizer; 5) a combination of yardwaste compost and granular Ca(NO3)2 with equal amounts of N from each fertilizer; and 6) fertigation which consisted of eight weekly applications of solubilized Ca(NO3)2. Nonfertilized trees served as the control. In the third year of this experiment, the two chicken litter compost treatments had the greatest soil extractable P, the yardwaste compost treatment had the greatest soil extractable K, both full-rate compost treatments had greater soil extractable Mg than the other treatments, and all four compost treatments had greater soil extractable Mn than the treatments without compost. The four compost treatments also had greater soil extractable Ca and B than treatments without compost. By the third year of the experiment, the four compost treatments also had greater soil organic matter (OM) and soil C (with the integrated chicken litter compost treatment having similar soil C to the other treatments). Potentially mineralizable nitrogen and soil microbial biomass were similar among the treatments over the course of this experiment. The full rate chicken litter compost treatment and both yardwaste compost treatments had greater soil microbial respiration in 2015. The fertigation treatment performed similarly to the treatment where Ca(NO3)2 was applied as a granular product to the soil. Treatment differences found for the soil properties did not translate to increased tree size or leaf N content, suggesting that the trees were able to acquire sufficient N from the soil under all of the treatments. Our results suggest that applying fertilizers to fine textured soil with relatively high OM may not increase apple tree growth or productivity within the first 3 years after planting. In addition, compost applications can improve many soil properties, but these differences may not result in improved orchard productivity within 3 years.

Free access

Three separate experiments were conducted to test standard calcium chloride salt (CaCl2) rates and several new formulations of calcium (Ca) for amelioration of bitter pit, a Ca-related physiological disorder that affects fruit of many apple (Malus ×domestica) cultivars, including the popular cultivar Honeycrisp. Even small amounts of bitter pit damage make apples unmarketable. We evaluated various formulations of Ca to compare their effectiveness in controlling bitter pit, including proprietary Ca products (InCa™, Sysstem-Cal™, Vigor-Cal™, XD10, and XD505) with and without antitranspirant. Calcium chloride is the most common Ca product used to reduce bitter pit incidence, but it has negative impacts, such as phytotoxicity and corrosiveness. Of the products that were tested in 2011, XD10 at the high rate and XD505 are candidates for future study. In 2012, both the CaCl2 and XD10 treatments had lower bitter pit severity than the nontreated control, but only the CaCl2 treatments had a lower total percentage of fruit with bitter pit compared with the control. The antitranspirant reduced bitter pit incidence in one of three treatments. Full season Ca treatments and higher rates (up to 23.5 lb/acre per season of elemental Ca) are needed to significantly reduce bitter pit incidence in ‘Honeycrisp’ apples in the mid-Atlantic United States.

Free access

Harvesting labor is the largest annual variable operating expense for apple (Malus ×domestica) orchard enterprises and is subject to escalating costs and shortages. In Europe, much of the cider apple harvesting is done with machinery, greatly reducing production costs. However, despite a rapid increase in hard cider production in North America over the past 15 years, mechanical cider apple harvesting has not been widely implemented. In this study, we compared mechanical with hand harvesting costs for model 5-, 15-, and 60-acre cider apple orchards located in New York using a partial budget model. Scale-appropriate harvesters were identified for use at each farm scale. Sensitivity analyses were used to test the cost differential for using each piece of machinery on varying orchard sizes and to model changes in labor costs. Across all orchard scales, we found that mechanically harvesting cider apples was more profitable than hand harvesting, with larger operations breaking even sooner and realizing greater returns than operations using hand harvesting. Mechanical harvesting costs broke even with hand harvesting in years 16, 7, and 5 and by year 30 reduced cumulative harvesting costs by 23%, 52%, and 53% in our 5-, 15-, and 60-acre model orchards, respectively. Increasing the orchard size resulted in greater returns from mechanical harvesting. Using the machinery in the 15-acre orchard scenario on a 30-acre farm resulted in costs breaking even with hand harvesting in year 3; by year 30, the cumulative costs resulted in 66% lower harvesting costs than hand labor. Mechanical harvesting remained profitable when labor wages were decreased and became more profitable in scenarios with increasing wages. For example, in the 60-acre orchard, mechanical harvesting cost 41% less than hand harvesting with a 2% annual compounding decrease in labor wages; with 2% annual compounding increase in labor wages, the mechanical harvesting cost was 63% less than hand harvesting. In addition to the cost savings, mechanical harvesting allows for harvesting cider apples with fewer logistical challenges, such as contracting, housing, and transporting migrant labor.

Open Access

Apple growers in New York lack the tools to produce high quality fruit for the organic or IFP marketplace. We are systematically evaluating OFP and IFP systems for pest control efficacy, fruit and soil quality, environmental impacts, and economic sustainability, in an orchard of disease-resistant `Liberty' on M.9 rootstock. The OFP system follows USDA-NOP standards and the IFP system follows newly developed NY IFP standards. In the first year of this study (2004), both systems were equally productive, but variable costs for OFP were twice that of IFP, due to 11 kaolin applications, while returns were comparable. In 2005, OFP yields were 25% greater than IFP yields, but 30% of OFP fruit was unmarketable largely due to insect damage. This loss, plus small fruit size, resulted in OFP returns of $5432 per hectare, about half the IFP returns. With only four kaolin applications in 2005, OFP costs were $2437 per hectare, marginally greater than the $2083 per hectare costs for IFP apples. Harvest maturity indices were similar and peak fruit quality was attained in both systems in early Oct. In 2004, consumer panelists could not detect differences between fruit from the two systems, but in 2005 panelists rated OFP apples as sweeter, more tart, better flavored, and more acceptable overall. Antioxidant activity, total phenolics concentrations, and mineral content of apples were similar between systems in both years. Values for all essential plant nutrients, organic matter content, pH, and CEC were also equivalent in each system both years. Cultivation was likely responsible for lowering the bulk density, soil strength, and aggregate stability of the OFP top soil in 2005. While OFP remains very challenging, IFP can be implemented successfully in New York orchards.

Free access

The organic acid concentration in apple (Malus ×domestica) juice is a major component of hard cider flavor. The goal of this study was to determine if the malic acid markers, Ma1 and Q8, could classify the titratable acidity concentration in cider apple accessions from the United States Department of Agriculture Malus germplasm collection into descriptive classifications. Our results indicate that for diploid genotypes, the Ma1 marker alone and the Ma1 and Q8 markers analyzed together could be used to predict cider apple acidity (P < 0.0001). Alone, the Ma1 marker categorized acidity into low (<2.4 g⋅L−1), medium (2.4–5.8 g⋅L−1), and high (>5.8 g⋅L−1) groups. The combination of Ma1 and Q8 markers provided more specificity, which would be useful for plant breeding applications. This work also identified a significant difference (P = 0.0132) in acidity associated with ploidy. On average, the triploids accessions had 0.33 g⋅L−1 higher titratable acidity than the diploid accessions. Based on the results of this work, we propose a genetics-based classification system for cider apples with the acidity component defined by the Ma1 and Q8 markers.

Open Access

Over 3 years (2016–18), tree productivity, biennial bearing, return bloom, and fruit quality were evaluated for seven high-tannin cider apple (Malus ×domestica Borkh.) cultivars. Five treatments were evaluated on each of the seven cultivars: hand-thinned of all fruit (a zero crop load treatment); hand-thinned to crop densities of three, six, or nine fruit/cm2 trunk cross-sectional area (TCSA); or left unthinned. In this paper, we report on the fruit maturity and juice quality properties that were analyzed for the three nonzero crop load treatments and the unthinned control. The effects of crop load on fruit maturity, as measured by starch pattern index and preharvest drop, were cultivar dependent. Crop density (fruit/cm2 TCSA) had a significant effect on all fruit maturity and juice quality variables, although effects were weakest in the “off” year (2017) for the whole planting when initial fruit set was low. As crop density increased, total poly phenols, titratable acidity, soluble solids, and primary amino nitrogen decreased in the juice of all seven cultivars. A partial budget analysis indicated that the reduced costs of nitrogen supplements due to increased primary amino nitrogen concentration alone would not justify cost of chemical or hand-thinning. By extrapolating the spring flowering density in the fourth year to potential fruit yields at harvest, we found that reducing crop load was projected to increase cumulative total polyphenol yields per tree over the long term. For the cultivars in this experiment, a target crop density of nine fruit/cm2 was found to adequately decrease biennial bearing while also not diminishing juice quality for hard cider production. High-tannin cider apple growers should consider juice quality, particularly tannin production, when making crop load management decisions.

Open Access

To assess the impact crop load has on hard cider chemistry, ‘York’ apple (Malus ×domestica Borkh.) trees were hand thinned to three different crop loads: low [two apples per cm2 branch cross-sectional area (BCSA)], medium (four apples per BCSA), and high (six apples per BCSA). Higher crop loads produced smaller, less acidic fruit that were slightly more mature. In juice made from fruit from these treatments, the total polyphenol content did not differ at harvest, but, after fermentation, the medium crop load had 27% and the high crop load had 37% greater total polyphenol content than the low crop load. Yeast assimilable nitrogen (YAN) concentration in juice made from fruit from the low crop load treatment had 18% and 22% greater than the medium and high crop load, respectively. YAN concentrations in juice from the medium and high crop load treatments were similar. Our results provide apple growers and hard cider producers with a better understanding of how apple crop load impacts YAN concentrations in juice and total polyphenol concentrations in juice and cider.

Free access

Many European apple (Malus ×domestica Borkh.) cultivars used for making alcoholic cider have a highly biennial bearing habit. To determine target crop load recommendations, seven cider cultivars grown in a high-density orchard were hand-thinned to crop densities of 0, 3, 6, and 9 fruit/cm2 trunk cross-sectional area (TCSA) or left unthinned as a control for 3 consecutive years (2016–18). Treatments were imposed on the same trees for all 3 years. Greater year-to-year yield variability, as measured by the biennial bearing index (BBI), correlated negatively with cumulative yields both within and among cultivars. Greater crop density had a negative correlation with the amount of return bloom in all years, but reducing crop density had a negligible effect on return bloom in the “off” year. When trees were left unthinned in the high-crop “on” years there was little to no return bloom in the following year. Partial budget analysis found that manually reducing crop density would result in a positive net change in 3-year profitability for Dabinett, but not the other cultivars. Over 4 years, under conservative assumptions about fruit set, chemical thinning to 9 fruit/cm2 TCSA would likely result in increased cumulative profitability in all seven cultivars. Hand-thinning was projected to be less profitable than chemical thinning but would still result in increased net profitability over 4 years, for five of the seven cultivars. These findings highlight the horticultural and economic benefits of crop load management for cider apple orchards. Further, many high-tannin cider cultivars can sustain a higher crop density than what is recommended for fresh-market apple production and still have adequate return bloom and cumulative yields.

Open Access

Located on a 20-ha commercial apple (Malus domestica Borkh.) orchard in the Yakima Valley, Washington, a 1.7-ha study area was planted with apple trees in 1994 in a randomized complete block design with four replications of three treatments: organic (ORG), conventional (CON), and integrated (INT). Soil classification, rootstock, cultivar, plant age, and all other conditions except management were the same on all plots. In years 9 (2002) and 10 (2003) of this study, we compared the orchard productivity and fruit quality of `Galaxy Gala' apples. Measurements of crop yield, yield efficiency, crop load, average fruit weight, tree growth, color grades, and weight distributions of marketable fruit, percentages of unmarketable fruit, classifications of unmarketable fruit, as well as leaf, fruit, and soil mineral concentrations, were used to evaluate orchard productivity. Apple fruit quality was assessed at harvest and after refrigerated (0 to 1 °C) storage for three months in regular atmosphere (ambient oxygen levels) and for three and six months in controlled atmosphere (1.5% to 2% oxygen). Fruit internal ethylene concentrations and evolution, fruit respiration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA), purgeable volatile production, sensory panels, and total antioxidant activity (TAA) were used to evaluate fruit quality. ORG crop yields were two-thirds of the CON and about half of the INT yields in 2002, but about one-third greater than either system in 2003. High ORG yields in 2003 resulted in smaller ORG fruit. Inconsistent ORG yields were probably the result of several factors, including unsatisfactory crop load management, higher pest and weed pressures, lower leaf and fruit tissue nitrogen, and deficient leaf tissue zinc concentrations. Despite production difficulties, ORG apples had 6 to 10 N higher flesh firmness than CON, and 4 to 7 N higher than INT apples, for similar-sized fruit. Consumer panels tended to rate ORG and INT apples to have equal or better overall acceptability, firmness, and texture than CON apples. Neither laboratory measurements nor sensory evaluations detected differences in SSC, TA, or the SSC to TA ratio. Consumers were unable to discern the higher concentrations of flavor volatiles found in CON apples. For a 200 g fruit, ORG apples contained 10% to 15% more TAA than CON apples and 8% to 25% more TAA than INT apples. Across most parameters measured in this study, the CON and INT farm management systems were more similar to each other than either was to the ORG system. The production challenges associated with low-input organic apple farming systems are discussed. Despite limited technologies and products for organic apple production, the ORG apples in our study showed improvements in some fruit quality attributes that could aid their marketability.

Free access

Hard cider production in the United States has increased dramatically during the past decade, but there is little information on how harvest and postharvest practices affect the chemistry of the resulting cider, including concentrations of organoleptically important flavanols. For 2 years we assessed fruit, juice, and cider from a total of five apple (Malus ×domestica Borkh.) cultivars in two experiments: sequential harvests and postharvest storage. Different cultivars were used in 2015 and 2016 with the exception of ‘Dabinett’, which was assessed in both years. There were no differences in polyphenol concentrations in cider made from fruit that was harvested on three separate occasions over a 4-week period in either 2015 or 2016. Fruit storage durations and temperatures had little influence on the chemistry when the experiment was conducted in 2015, but polyphenol concentration was greater after storage in the 2016 experiment. In 2016, total polyphenols in ‘Dabinett’ ciders were 51% greater after short-term storage at 10 °C and 67% greater after long-term storage at 1 °C than the control, which was not subjected to a storage treatment. In 2016, total polyphenols in ‘Binet Rouge’ ciders were 67% greater after short-term storage at 10 °C and 94% greater after long-term storage at 1 °C than the control. Although results varied among cultivars and harvest years, storing apples for longer periods of time and at warmer temperatures may be a strategy to increase polyphenol, particularly flavanol, concentrations in hard cider.

Free access