Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Gregory M. Peck x
Clear All Modify Search

In the Mid-Atlantic, mineral nitrogen (N) fertilizers are applied in high-density apple (Malus ×domestica Borkh.) orchards to increase tree vegetative growth and achieve earlier fruiting. However, when applied in excess of plant needs, N fertilizer applications are an unnecessary expense and may lead to N leaching and groundwater pollution. Therefore, it is necessary to develop orchard fertilization programs that simultaneously provide adequate crop nutrition and minimize N loss into the environment. Nitrogen was applied in each of 3 years to newly planted ‘Red Delicious cv Schlect’/‘M.26’ trees at 67 kg N/ha/year in six fertilizer treatments: 1) two equal applications of granular calcium nitrate [Ca(NO3)2]; 2) chicken litter compost; 3) yardwaste compost; 4) a combination of chicken litter compost and granular Ca(NO3)2 with equal amounts of N from each fertilizer; 5) a combination of yardwaste compost and granular Ca(NO3)2 with equal amounts of N from each fertilizer; and 6) fertigation which consisted of eight weekly applications of solubilized Ca(NO3)2. Nonfertilized trees served as the control. In the third year of this experiment, the two chicken litter compost treatments had the greatest soil extractable P, the yardwaste compost treatment had the greatest soil extractable K, both full-rate compost treatments had greater soil extractable Mg than the other treatments, and all four compost treatments had greater soil extractable Mn than the treatments without compost. The four compost treatments also had greater soil extractable Ca and B than treatments without compost. By the third year of the experiment, the four compost treatments also had greater soil organic matter (OM) and soil C (with the integrated chicken litter compost treatment having similar soil C to the other treatments). Potentially mineralizable nitrogen and soil microbial biomass were similar among the treatments over the course of this experiment. The full rate chicken litter compost treatment and both yardwaste compost treatments had greater soil microbial respiration in 2015. The fertigation treatment performed similarly to the treatment where Ca(NO3)2 was applied as a granular product to the soil. Treatment differences found for the soil properties did not translate to increased tree size or leaf N content, suggesting that the trees were able to acquire sufficient N from the soil under all of the treatments. Our results suggest that applying fertilizers to fine textured soil with relatively high OM may not increase apple tree growth or productivity within the first 3 years after planting. In addition, compost applications can improve many soil properties, but these differences may not result in improved orchard productivity within 3 years.

Free access

Three separate experiments were conducted to test standard calcium chloride salt (CaCl2) rates and several new formulations of calcium (Ca) for amelioration of bitter pit, a Ca-related physiological disorder that affects fruit of many apple (Malus ×domestica) cultivars, including the popular cultivar Honeycrisp. Even small amounts of bitter pit damage make apples unmarketable. We evaluated various formulations of Ca to compare their effectiveness in controlling bitter pit, including proprietary Ca products (InCa™, Sysstem-Cal™, Vigor-Cal™, XD10, and XD505) with and without antitranspirant. Calcium chloride is the most common Ca product used to reduce bitter pit incidence, but it has negative impacts, such as phytotoxicity and corrosiveness. Of the products that were tested in 2011, XD10 at the high rate and XD505 are candidates for future study. In 2012, both the CaCl2 and XD10 treatments had lower bitter pit severity than the nontreated control, but only the CaCl2 treatments had a lower total percentage of fruit with bitter pit compared with the control. The antitranspirant reduced bitter pit incidence in one of three treatments. Full season Ca treatments and higher rates (up to 23.5 lb/acre per season of elemental Ca) are needed to significantly reduce bitter pit incidence in ‘Honeycrisp’ apples in the mid-Atlantic United States.

Free access

Over 3 years (2016–18), tree productivity, biennial bearing, return bloom, and fruit quality were evaluated for seven high-tannin cider apple (Malus ×domestica Borkh.) cultivars. Five treatments were evaluated on each of the seven cultivars: hand-thinned of all fruit (a zero crop load treatment); hand-thinned to crop densities of three, six, or nine fruit/cm2 trunk cross-sectional area (TCSA); or left unthinned. In this paper, we report on the fruit maturity and juice quality properties that were analyzed for the three nonzero crop load treatments and the unthinned control. The effects of crop load on fruit maturity, as measured by starch pattern index and preharvest drop, were cultivar dependent. Crop density (fruit/cm2 TCSA) had a significant effect on all fruit maturity and juice quality variables, although effects were weakest in the “off” year (2017) for the whole planting when initial fruit set was low. As crop density increased, total poly phenols, titratable acidity, soluble solids, and primary amino nitrogen decreased in the juice of all seven cultivars. A partial budget analysis indicated that the reduced costs of nitrogen supplements due to increased primary amino nitrogen concentration alone would not justify cost of chemical or hand-thinning. By extrapolating the spring flowering density in the fourth year to potential fruit yields at harvest, we found that reducing crop load was projected to increase cumulative total polyphenol yields per tree over the long term. For the cultivars in this experiment, a target crop density of nine fruit/cm2 was found to adequately decrease biennial bearing while also not diminishing juice quality for hard cider production. High-tannin cider apple growers should consider juice quality, particularly tannin production, when making crop load management decisions.

Open Access

Many European apple (Malus ×domestica Borkh.) cultivars used for making alcoholic cider have a highly biennial bearing habit. To determine target crop load recommendations, seven cider cultivars grown in a high-density orchard were hand-thinned to crop densities of 0, 3, 6, and 9 fruit/cm2 trunk cross-sectional area (TCSA) or left unthinned as a control for 3 consecutive years (2016–18). Treatments were imposed on the same trees for all 3 years. Greater year-to-year yield variability, as measured by the biennial bearing index (BBI), correlated negatively with cumulative yields both within and among cultivars. Greater crop density had a negative correlation with the amount of return bloom in all years, but reducing crop density had a negligible effect on return bloom in the “off” year. When trees were left unthinned in the high-crop “on” years there was little to no return bloom in the following year. Partial budget analysis found that manually reducing crop density would result in a positive net change in 3-year profitability for Dabinett, but not the other cultivars. Over 4 years, under conservative assumptions about fruit set, chemical thinning to 9 fruit/cm2 TCSA would likely result in increased cumulative profitability in all seven cultivars. Hand-thinning was projected to be less profitable than chemical thinning but would still result in increased net profitability over 4 years, for five of the seven cultivars. These findings highlight the horticultural and economic benefits of crop load management for cider apple orchards. Further, many high-tannin cider cultivars can sustain a higher crop density than what is recommended for fresh-market apple production and still have adequate return bloom and cumulative yields.

Open Access

Apple growers in New York lack the tools to produce high quality fruit for the organic or IFP marketplace. We are systematically evaluating OFP and IFP systems for pest control efficacy, fruit and soil quality, environmental impacts, and economic sustainability, in an orchard of disease-resistant `Liberty' on M.9 rootstock. The OFP system follows USDA-NOP standards and the IFP system follows newly developed NY IFP standards. In the first year of this study (2004), both systems were equally productive, but variable costs for OFP were twice that of IFP, due to 11 kaolin applications, while returns were comparable. In 2005, OFP yields were 25% greater than IFP yields, but 30% of OFP fruit was unmarketable largely due to insect damage. This loss, plus small fruit size, resulted in OFP returns of $5432 per hectare, about half the IFP returns. With only four kaolin applications in 2005, OFP costs were $2437 per hectare, marginally greater than the $2083 per hectare costs for IFP apples. Harvest maturity indices were similar and peak fruit quality was attained in both systems in early Oct. In 2004, consumer panelists could not detect differences between fruit from the two systems, but in 2005 panelists rated OFP apples as sweeter, more tart, better flavored, and more acceptable overall. Antioxidant activity, total phenolics concentrations, and mineral content of apples were similar between systems in both years. Values for all essential plant nutrients, organic matter content, pH, and CEC were also equivalent in each system both years. Cultivation was likely responsible for lowering the bulk density, soil strength, and aggregate stability of the OFP top soil in 2005. While OFP remains very challenging, IFP can be implemented successfully in New York orchards.

Free access

A systems-based approach was used to evaluate integrated (IFP) and organic fruit production (OFP) (during and after the transition period) in an established high-density commercial orchard of disease-resistant ‘Liberty’ apples (Malus ×domestica Borkh.). Agroecological and economic evaluations included: yields, tree growth, leaf nutrient levels, arthropod and cosmetic fruit damage, environmental impacts, variable costs of production, and potential crop value using both direct market and wholesale market prices. Cumulative yields (2004–2007) of both harvested and total (harvested + dropped) fruit were not different between the two systems. Tree size (trunk cross-sectional area) was not consistently different between the production systems. The IFP-grown apples had between 3% and 6% insect damage (within normal percentages for this region) and between 3% and 17% total damage (either internal or cosmetic). The OFP-grown apples had between 3% and 25% insect damage and 3% to 75% total damage, varying greatly from year to year. In 2006, superficial blemishes, caused by diseases and scarfskin, were extensive on OFP-grown fruit. Using the Environmental Impact Quotient, the potential negative environmental impacts were estimated to be six times greater in the OFP system, largely as a result of the use of lime sulfur and fish oil for thinning and the large quantity of kaolin clay used for pest control. Partial budgets of both systems estimated variable production expenses to be 9% greater for OFP. Sales value was estimated to be 6% greater for OFP than IFP using direct market prices (e.g., farm stand or farmers' market) and 11% greater for IFP than OFP using wholesale market prices. A 56% premium was used to calculate the OFP crop value in the third and fourth years (fruit could have been sold with an organic label after 36 months from the last organically prohibited material). Four years of evaluation suggested that IFP could be widely implemented in the northeastern United States, but the lack of market incentives might impede its adoption. Producing disease-resistant apples under an OFP system also showed potential for success, but a price premium would be needed to offset the reduced profitability incurred from arthropod pests, poor fruit finish, and small fruit size.

Free access

A greater understanding of apple (Malus ×domestica) pollen tube growth rates can improve crop load management in commercial orchards. Specifically, applications of caustic bloom-thinning chemicals need to occur when enough, but not too many, flowers have been fertilized to achieve crop load densities that balance yields with marketable fruit sizes. In this study, the pollen tube growth rates of five crabapple (Malus sp.) cultivars were measured in the styles of three maternal cultivars at 12, 18, 24, and 30 °C after 24 hours in a growth chamber. Pollen tube growth rates were greatest for ‘Selkirk’ and ‘Thunderchild’ at 12 °C, and greatest for ‘Indian Summer’, ‘Selkirk’, and ‘Thunderchild’ at 24 °C. Pollen tube growth increased with increasing temperatures until 24 °C. There were minimal pollen tube growth rate increases between 24 and 30 °C. Overall, ‘Snowdrift’ had the slowest pollen tube growth rate of the five evaluated crabapple genotypes. At 24 and 30 °C, ‘Indian Summer’ and ‘Thunderchild’ pollen tubes reached the base of the style most frequently, and ‘Snowdrift’ pollen tubes the least frequently. Pollen tube growth rate was also influenced by the maternal cultivar, with Golden Delicious having relatively faster pollen tube growth than Fuji at 24 and 30 °C. Interactions among paternal and maternal genotypes as well as temperature after pollination reveal complex biological and environmental relationships that can be used to develop more precise crop load management strategies for apple orchards.

Free access

Located on a 20-ha commercial apple (Malus domestica Borkh.) orchard in the Yakima Valley, Washington, a 1.7-ha study area was planted with apple trees in 1994 in a randomized complete block design with four replications of three treatments: organic (ORG), conventional (CON), and integrated (INT). Soil classification, rootstock, cultivar, plant age, and all other conditions except management were the same on all plots. In years 9 (2002) and 10 (2003) of this study, we compared the orchard productivity and fruit quality of `Galaxy Gala' apples. Measurements of crop yield, yield efficiency, crop load, average fruit weight, tree growth, color grades, and weight distributions of marketable fruit, percentages of unmarketable fruit, classifications of unmarketable fruit, as well as leaf, fruit, and soil mineral concentrations, were used to evaluate orchard productivity. Apple fruit quality was assessed at harvest and after refrigerated (0 to 1 °C) storage for three months in regular atmosphere (ambient oxygen levels) and for three and six months in controlled atmosphere (1.5% to 2% oxygen). Fruit internal ethylene concentrations and evolution, fruit respiration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA), purgeable volatile production, sensory panels, and total antioxidant activity (TAA) were used to evaluate fruit quality. ORG crop yields were two-thirds of the CON and about half of the INT yields in 2002, but about one-third greater than either system in 2003. High ORG yields in 2003 resulted in smaller ORG fruit. Inconsistent ORG yields were probably the result of several factors, including unsatisfactory crop load management, higher pest and weed pressures, lower leaf and fruit tissue nitrogen, and deficient leaf tissue zinc concentrations. Despite production difficulties, ORG apples had 6 to 10 N higher flesh firmness than CON, and 4 to 7 N higher than INT apples, for similar-sized fruit. Consumer panels tended to rate ORG and INT apples to have equal or better overall acceptability, firmness, and texture than CON apples. Neither laboratory measurements nor sensory evaluations detected differences in SSC, TA, or the SSC to TA ratio. Consumers were unable to discern the higher concentrations of flavor volatiles found in CON apples. For a 200 g fruit, ORG apples contained 10% to 15% more TAA than CON apples and 8% to 25% more TAA than INT apples. Across most parameters measured in this study, the CON and INT farm management systems were more similar to each other than either was to the ORG system. The production challenges associated with low-input organic apple farming systems are discussed. Despite limited technologies and products for organic apple production, the ORG apples in our study showed improvements in some fruit quality attributes that could aid their marketability.

Free access

Although demand for organic produce continues to increase in the mid-Atlantic, few apple (Malus ×domestica Borkh.) growers in the region have adopted organic management practices due to the considerable disease, insect, and weed pressure, as well as the lack of effective crop load management tools. In this study, lime sulfur (LS) and Regalia® (R) were applied in different sequences (i.e., LS/LS, LS/R, R/R, and R/LS), each in a mixture with JMS Stylet-Oil, to chemically thin apple flowers in an organically managed ‘Honeycrisp’/‘MM.111’ orchard. There was also a nontreated control, a “grower standard” control (LS at 11 mm fruitlet diameter), and a hand-thinned control. The treatments were evaluated for their ability to reduce crop load, as well as to control powdery mildew [Podosphaera leucotricha (Ellis & Everh.) E. S. Salmon], cedar apple rust (Gymnosporangium juniperi-virginiana Schwein.), and quince rust (Gymnosporangium clavipes Cooke & Peck). All treatments reduced crop load compared with the nontreated control, and after the first application of LS or R, the number of fertilized king blooms was reduced and fertilization was prevented in all side blooms. All bloom thinning treatments had more fruit peel russet than the control and russet was more severe when LS was one of the applications. Bloom thinning applications of LS and R did not reduce powdery mildew leaf infection compared with the nontreated control. Cedar apple rust incidence was reduced by all bloom thinning treatments, though some lesions were detected in all treatments. There were minimal quince rust infections in any of the treatments, including the nontreated control. These results suggest that when LS and/or Regalia® are mixed with JMS Stylet-Oil and applied as bloom thinners, they can reduce crop load, and, as a secondary benefit, they can also decrease cedar apple rust incidence from infections that occur during bloom.

Free access

Hard cider production in the United States has increased dramatically during the past decade, but there is little information on how harvest and postharvest practices affect the chemistry of the resulting cider, including concentrations of organoleptically important flavanols. For 2 years we assessed fruit, juice, and cider from a total of five apple (Malus ×domestica Borkh.) cultivars in two experiments: sequential harvests and postharvest storage. Different cultivars were used in 2015 and 2016 with the exception of ‘Dabinett’, which was assessed in both years. There were no differences in polyphenol concentrations in cider made from fruit that was harvested on three separate occasions over a 4-week period in either 2015 or 2016. Fruit storage durations and temperatures had little influence on the chemistry when the experiment was conducted in 2015, but polyphenol concentration was greater after storage in the 2016 experiment. In 2016, total polyphenols in ‘Dabinett’ ciders were 51% greater after short-term storage at 10 °C and 67% greater after long-term storage at 1 °C than the control, which was not subjected to a storage treatment. In 2016, total polyphenols in ‘Binet Rouge’ ciders were 67% greater after short-term storage at 10 °C and 94% greater after long-term storage at 1 °C than the control. Although results varied among cultivars and harvest years, storing apples for longer periods of time and at warmer temperatures may be a strategy to increase polyphenol, particularly flavanol, concentrations in hard cider.

Free access