Search Results
Muskmelon [Cucumis melo L. (Reticulatus Group)] fruit sugar content is directly related to potassium (K)-mediated phloem transport of sucrose into the fruit. However, during fruit growth and maturation, soil fertilization alone is often inadequate (due to poor root uptake and competitive uptake inhibition from calcium and magnesium) to satisfy the numerous K-dependent processes, such as photosynthesis, phloem transport, and fruit growth. Experiments were conducted during Spring 2003 and 2004 to determine if supplemental foliar K applications during the fruit growth and maturation period would alleviate this apparent inadequate K availability in orange-flesh muskmelon `Cruiser'. Plants were grown in a greenhouse and fertilized throughout the study with a soil-applied N-P-K fertilizer. Flowers were hand pollinated and only one fruit per plant was allowed to develop. Starting at 3 to 5 days after fruit set, and up to 3 to 5 days prior to fruit maturity (full slip), entire plants, including the fruit, were sprayed with a glycine amino acid-complexed potassium (potassium metalosate, 24% K) solution, diluted to 4.0 mL·L-1. Three sets of plants were sprayed either weekly (once per week), biweekly (once every 2 weeks) or not sprayed (control). Fruit from plants receiving supplemental foliar K matured on average 2 days earlier than those from control plants. In general, there were no differences in fruit maturity or quality aspects between the weekly and biweekly treatments except for fruit sugar and beta-carotene concentrations, which were significantly higher in the weekly compared to the biweekly or control treatments. Supplemental foliar K applications also resulted in significantly firmer fruit with higher K, soluble solids, total sugars, ascorbic acid (vitamin C) and beta-carotene concentrations than fruit from control plants. These results demonstrate that carefully timed foliar K nutrition can alleviate the developmentally induced K deficiency effects on fruit quality and marketability.
Muskmelonfruit[Cucumis melo L. (Retiulatus Goup)] sugar content is related to potassium (K)-mediated phloem loading and unloading of sucrose into the fruit. During fruit growth and maturation, soil fertility is often inadequate (due to poor root uptake) to satisfy the demand for K. Potassium uptake also competes with the uptake of Ca and Mg, two essential minerals needed for melon fruit membrane structure, function and postharvest shelf-life. Supplemental foliar-applied K could alleviate this problem especially during the critical fruit growth/maturation period. We conducted experiments to determine the effects of timing of supplemental foliar K applications on fruit quality and health attributes of orange-flesh muskmelon `Cruiser'. Plants were grown in a greenhouse and fertilized with a regular soil-applied N–P–K fertilizer throughout the study. Entire plants, including the fruit were sprayed with a solution of a novel glycine amino acid-complexed potassium (Potassium Metalosate, 24% K), diluted to 4.0 mL·L-1, 3 to 5 d after anthesis (fruit set) and up to 3 to 5 d prior to abscission (full-slip). Three sets of plants were either sprayed weekly, or bi-weekly or not sprayed (control). Fruit from plants receiving supplemental foliar K matured on average 2 days earlier, and had significantly higher fruit K concentrations, soluble solids, total sugars, ascorbic acid (vitamin C), beta-carotene, and were firmer than fruit from control plants. In general, there were few differences in fruit quality aspects between bi-weekly or weekly treatments. The data demonstrate that fruit quality and marketability as well as some of the developmentally induced K deficiency effects can be alleviated through foliar nutrition.
A common practice for the irrigation management of muskmelon (Cucumis melo L. reticulatus group) is to restrict water supply to the plants from late fruit development and through the harvest period. However, this late fruit development period is critical for sugar accumulation and water stress at this stage is likely to limit the final fruit soluble solids concentration (SSC). Two field irrigation experiments were conducted to test the idea that maintaining muskmelon plants free of water stress through to the end of harvest will maximise sugar accumulation in the fruit. In both trials, water stress before or during harvest detrimentally affected fruit SSC and fresh weight (e.g., no stress fruit 11.2% SSC, weight 1180 g; stress fruit 8.8% SSC, weight 990 g). Maintaining plants free of water stress from flowering through to the end of harvest is recommended to maximise yield and fruit quality.