Search Results
A study to determine the influence of light duration on seed germination was performed in a temperature-controlled growth chamber. Light treatments consisted of 0 (control), 6, 8, 10, 12 and 14 h of light exposure. Cool fluorescent light bulbs provided 19 μMol·m-2·s-1 light. Fifty seeds of each treatment were placed into separately labeled 6.0-cm-diameter petri dishes lined with Whatman #42 filter papers moistened with 2 mL of distilled water. Seed of both species germinated poorly in the control treatment. Mean time of germination (MTG) and germination percentage increased for both species when seeds were exposed to light. Pre-soaking seed in gibberellic acid (GA) significantly improved germination percentages of both species compared to the untreated control. Centipedegrass germination percentage and MTG also increased with light exposure. Carpetgrass seed germination was not enhanced by GA treatments with light exposure. The results of this experiment suggests that, if seed are covered too deeply, excluding light, MTG and percentage germination will be reduced. However, pre-soaking seed in a GA solution can improve dark germination by as much as 50% for both grass species.
Commercially-produced, endodormant `Gloria' azaleas were placed into temperature × duration dormancy-breaking treatments at 2 month intervals to characterize seasonal variation in floricultural performance. Given the standard industry practice to break bud dormancy is 6 weeks at 3.5 to 7.2 C, three temperatures (3.5, 7.5, 11.5 C) and four durations (2, 4, 6, 8 weeks), plus a non-chilled control, were used to examine the contribution of each dormancy-breaking factor to subsequent floricultural quality. Treatment-Induced leaf abscission and flowering were quantitated, including days to Initial flowering and 50% flowering. Flowering response of dormant-budded azaleas produced during late spring and early summer (chilled during summer and early fall, respectively) was primarily and positively related to chilling duration, with only a minor influence of chilling temperature. In contrast, flowering of fall-produced endodormant plants (chilled during late fall) was best at 3.5 C, regardless of duration. Across all intervals, control plants averaged a leaf loss rate of 3 to 4 per day, suggesting a steady-state turnover rate. While leaf abscission was higher in all chilling-treated plants, those produced during fall and given the standard (or longer) chilling treatment exhibited about twice the total abscission (averaging as much as 20 leaves per day) as plants produced at other times, resulting in a clear reduction in plant foliar quality.
In Summer 2003, sorbic acid was detected in a processed Louisiana product that had been shipped internationally. This discovery caused the food product to be rejected by the foreign market since sorbic acid was not declared on the label. The source was eventually traced by an analytical lab to a garlic powder component used in the product. Subsequent evaluations by the lab of fresh and dried garlic products obtained from stores indicated sorbic acid. The presence of sorbic acid suggested that it might either be a contaminant or a previously unreported naturally occurring component of garlic. To determine which was more likely, 12 garlic varieties were planted in Baton Rouge, La., during September 2003 and harvested the following spring. In addition to this harvested garlic, fresh garlic, garlic juice and garlic powder were purchased in May 2004 from three local stores. All these samples plus the original product were analyzed for sorbic acid using spectrophotometry and HPLC methods at the LSU Horticulture Dept. None of the samples contained measurable quantities of sorbic acid except for the original product. Since there appears to be no naturally occurring sorbic acid in garlic, it is likely that at least a portion of the fresh and processed garlic distributed in the U.S. during 2003 may have been adulterated with sorbic acid.
The demand for hot sauce products continues to expand in the U.S. In the case of jalapeno pepper sauce, there are many cultivars available for sauce production but those best suited for processing have not been adequately determined. Six cultivars (four replications) of jalapeno peppers (`Coyame', `Grande', `Jalapeno-M', `Mitla', `Tula' and `Veracruz') were evaluated for mash fermentation. The attributes studied during mash aging were color spectra, capsaicin content and fermentable sugars. Fructose and glucose were the predominant sugars in jalapeno peppers and these sugars were utilized gradually with time indicating slow fermentation by microorganisms in the 15% salt mash. Capsaicin and dihydrocapsaicin were the predominant capsaicinoids in the jalapeno peppers with `Tula' containing the greatest concentration and `Veracruz' the least. All mashes displayed an apparent and unexpected rise in measurable capsaicinoids up to 6 months with a decline at 12 months. Color changes in the pepper mash were rapid initially but slowed after the first month of fermentation. Percent reflectance in fresh ground peppers was strongest in the range of 550–560 nm but, after salting, reflectance shifted to 580–590 nm and remained throughout the fermentation. Based on the characteristics tested, any of these cultivars would make a suitable mash for sauce. The heat content of the final product could be controlled by cultivar selection or through blending.
Priming or presoaking seed of common carpetgrass (Axonopus affinis Chase) and centipedegrass [Eremochloa ophiuroides Munro. (Kunz)] increased germination percentage and decreased mean time of germination (MTG) at 20, 25, and 30 °C. The effect of presoaking and priming was dependent on grass species and temperature. The optimum seed germination temperature for both of these warm-season species was 30 °C. Maximum effect on common carpetgrass or centipedegrass seeds was achieved by priming in 2% KNO3; higher concentrations did not improve germination percentage or MTG, and 4% was in some cases detrimental. Germination was higher and MTG lower at 20 and 30 °C than at 15 °C. Presoaking common carpetgrass and centipedegrass seeds was the most efficient seed enhancement treatment for germination at 30 °C.
Ornamental gingers are popular cut flowers and have been promoted as a promising potted flower crop because of unique foliage, long-lasting colorful bracts, and few pest problems. Rhizomes are the primary means of propagation in late spring followed by shoot growth and flowering, and plants enter dormancy under short days in the fall. Termination of dormancy is important for greenhouse forcing and extending the growing season. Manipulation of rhizome storage to satisfy dormancy requires investigation into the storage environment. It appears that controlling growth, development and flowering in geophytic plants is dependent on reserve accumulation, mobilization, and redistribution. Rhizomes of four ginger species (Curcuma alismatifolia Gagnep., C. roscoeana Wallich, Globba winittii C.H. Wright, and Kaempferia galanga L.) were stored for 0 to 16 weeks at 15, 20, or 25 °C to determine the effect on growth, flowering, respiration rates, and carbohydrate content. Upon completion of treatment application, rhizomes were planted in a peat moss:bark:perlite mix and placed in a greenhouse with 25 °C day/21 °C night temperatures with 40% shade. The production time, days to emergence (DTE) and days to flower (DTF), was reduced with an increase in storage temperature and duration for all species. DTE and DTF for Globba and Kaempferia were hastened when rhizomes were stored for 16 weeks at 25 °C. For C. alismatifolia, DTE and DTF were hastened when rhizomes were stored at 25 °C for at least 10 weeks. For C. roscoeana, storage at 25 °C for 14 or 16 weeks was found to hasten emergence. The response of respiration and carbohydrate concentration was not consistent with rhizome and plant growth responses.