Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Glenn R. Zalman x
  • All content x
Clear All Modify Search
Free access

Frederick S. Davies and Glenn R. Zalman

Several studies suggest that optimum N rate and application frequency differ among citrus rootstocks. `Rhode Red' valencia orange trees [Citrus sinensis (L.) Osb.] on three rootstocks, C. volkameriana Ten. and Pasq., `Carrizo' citrange [C. sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.], and `Swingle' citrumelo [C. paradisi Macf. × P. trifoliata (L.) Raf.], were used to determine if N rate and application frequency should be adjusted, based on rootstock, during the first 3 years in the field. Treatments were arranged in a 3×3×3 (rootstock, N rates, N application frequency, respectively) factorial experiment. Annual N application rates ranged from 68 to 272 g/tree depending on tree age, and N was applied biweekly, weekly or monthly. Application frequency had no effect on trunk diameter or leaf N concentration in any year. Rootstock had a significant effect on growth in all 3 years, with trees on C. volkameriana being largest and having the greatest yields, followed by those on `Carrizo' and `Swingle', respectively. Trees on C. volkameriana were larger than those on the other rootstocks because they were larger at planting, grew over a longer period during the year, and often grew at a faster rate. Nitrogen rate had no effect on growth during the first 2 years in the field, but the highest N rate increased yields in year 3 for trees on C. volkameriana and `Swingle' rootstocks. Interaction between rootstock and N rate was nonsignificant for trunk diameter, but it was significant for yield, suggesting that trees on C. volkameriana responded more to increased N than did those on the other rootstocks.

Full access

Frederick S. Davies, Glenn R. Zalman, Ed Stover, and Scott Ciliento

EcoLyst, a formulation of N-N-diethyl-2-(4-methylbenzyloxy) ethylamine hydrochloride containing 1 g/floz [4.5 oz/gal (33.8 g·L-1)] a.i., is a plant growth regulator that has been reported to increase soluble solids concentration (SSC) in juice oranges by 0.6% to 1.2%. Our objectives were to determine the effectiveness of EcoLyst application for increasing SSC in Florida oranges (Citrus sinensis) and grapefruit (C. paradisi), and to identify the optimum rate and time of application. Experiments were conducted for three seasons using `Hamlin,' `Pineapple,' and `Valencia' sweet oranges; and for two seasons using `Flame,' `Marsh,' and `Ray Ruby' grapefruit, all in commercial groves. EcoLyst was applied at 6 and 12 floz/acre (0.44 and 0.88 L·ha-1) for oranges and 16 and 32 ppm (mg·L-1) [effectively 9 and 18 floz/acre (0.66 and 1.32 L·ha-1) in most sprays] for grapefruit, and included Silwet L-77 adjuvant at 0.05%. Applications were made at several stages of development from prebloom to initial fruit set. In all cases, SSC was determined as juice corrected SSC, by adjusting refractometer readings based on titratable acidity. In 13 trials with sweet orange only five displayed significant increases in SSC (P ≤ 0.05) resulting from EcoLyst application. Two additional trials produced SSC increases significant at P < 0.10. Even where significant increases in SSC occurred they were typically observed in only one harvest and at one time of application and were always relatively low in magnitude (highest increase over controls was 0.38%). No rate or timing of EcoLyst application was consistently associated with best response, although eight of nine SSC increases observed in orange occurred with applications ranging from prebloom to 25% open flowers. Only one significant increase in SSC was observed in five trials with grapefruit. In these studies, increases in SSC resulting from EcoLyst application were neither sufficiently consistent nor large enough to justify a recommendation for commercial use in Florida citrus.