Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Glen Ritchie x
Clear All Modify Search

Nitrogen (N) is often supplied to plants in excess to minimize the possibility of encountering N deficiency that would reduce the plant quality due to leaf chlorosis and necrosis. This is not only costly, but it can reduce the quality of plants, predispose the plants to biotic stress such as Botrytisgray mold, and extend the production cycle. Several tools can be used to identify N deficiency in plants, and most are based on chlorophyll reflectance or transmittance. While sensitive when plants are experiencing N deficiency, spectral signals can saturate in an ample N supply and make it difficult to discern sufficient and supra-optimal N nondestructively. Three diverse ornamental species (begonia, Begoniacea×tuberhybrida; butterflybush, Buddlejadavidii; and geranium, Pelargonium×hortorum) were grown with a broad range of N supplied (1.8 to 58 mm) in three separate studies that resulted in a range of 1.8% to 6% tissue N concentration. Using a spectroradiometer, we measured reflectance from the whole plants twice over a period of 3 weeks. A first-derivative analysis of the data identified six wavebands that were strongly correlated to both begonia and butterflybush tissue N concentration (r 2 ∼ 0.9), and two of these also correlated well to geranium N concentration. These wavebands did not correlate to chlorophyll peak absorbance, but rather blue, green, red, and far-red “edges” of known plant pigments. These wavebands hold promise for use as a nondestructive indicator of N status over a much broader range of tissue N concentration than current sensors can reliably predict.

Free access

The productivity of lettuce in a combination of high light, high temperature, and elevated CO2 has not been commonly studied because rapid growth usually causes a calcium deficiency in meristems called tipburn, which greatly reduces quality and marketability. We eliminated tipburn by blowing air directly onto the meristem, which allowed us to increase the photosynthetic photon flux (PPF) to 1000 μmol·m-2·s-1 (57.6 mol·m-2·d-1); two to three times higher than normally used for lettuce. Eliminating tipburn doubled edible yield at the highest PPF level. In addition to high PPF, CO2 was elevated to 1200 μmol·m-2·mol-1, which increased the temperature optimum from 25 to 30 °C. The higher temperature increased leaf expansion rate, which improved radiation capture and more than doubled yield. Photosynthetic efficiency, measured as canopy quantum yield in a whole-plant gas exchange system, steadily increased up to the highest temperature of 32 °C in high CO2. The highest productivity was 19 g·m-2·d-1 of dry biomass (380 g·d-1 fresh mass) averaged over the 23 days the plants received light. Without the limitation of tipburn, the combination of high PPF, high temperature, and elevated CO2 resulted in a 4-fold increase in growth rate over productivity in conventional environments.

Free access

Water scarcity is increasing in the world, which is limiting crop production, especially in water-limited areas such as Southern High Plains of the United States. There is a need to adopt the irrigation management practices that can help to conserve water and sustain crop production in such water-limited areas. A 2-year field study was conducted during the summers of 2019 and 2020 to evaluate the effect of deficit irrigation levels and cultivars on root distribution pattern, soil water depletion, and water use efficiency (WUE) of cucumber (Cucumis sativus). The experiment was conducted in a split-plot design with four irrigation levels [100%, 80%, 60%, and 40% crop evapotranspiration (ETc)] as main plot factor and two cultivars (Poinsett 76 and Marketmore 76) as subplot factor with three replications. Results showed that root length density (RLD) was unaffected by the irrigation levels in 2019. In 2020, the RLD was comparable between 100% and 80% ETc, and it was significantly higher in 100% ETc than both 60% Eand 40% ETc. Root surface area density (RSAD) was not significantly different between 100% and 80% ETc, and it was significantly lower in both 60% and 40% ETc than 100% ETc in both years. Soil water depletion was the highest in 40% ETc followed by 60% and 80% ETc, and it was least in 100% ETc in both years. Evapotranspiration (ET) was the highest in 100% ETc followed by 80%, 60%, and 40% ETc. The WUE was not statistically different among the irrigation treatments. However, numerically, WUE was observed in the following order: 80% ETc > 100% ETc > 60% ETc > 40% ETc. The RLD, RSAD, soil water depletion, and ET were not significantly different between ‘Poinsett 76’ and ‘Marketmore 76’. However, fruit yield was significantly higher in ‘Poinsett 76’ than ‘Marketmore 76’, which resulted in higher WUE in Poinsett 76. It can be concluded that 80% ETc and Poinsett 76 cultivar can be adopted for higher crop water productivity and successful cucumber production in SHP.

Open Access