Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Gerald H. Brusewitz x
  • Refine by Access: All x
Clear All Modify Search
Free access

Niels O. Maness, Gerald H. Brusewitz, and T. Gregory McCollum

Variability in mesocarp firmness for peach (Prunus persica L. Batsch) fruit halves cut either parallel or perpendicular to the suture was determined for three cultivars (Halehaven, Ranger, and Topaz). Firmness evaluations were conducted using an Instron Universal testing instrument with a 3.2-mm rounded tip probe. Firmness of the inner, middle, and outer regions of the mesocarp at four angular positions around each peach half was determined at four maturity stages. Average mesocarp firmness declined with advanced stages of fruit maturity. Inner mesocarp was firmest for fruit from all three cultivars. Internal variation in firmness for the middle and outer regions of the mesocarp was highly cultivar dependent. Firmness decreased longitudinally from the stem end to the blossom end and latitudinally from the suture to the cheeks.

Free access

Susan M. Huslig, Michael W. Smith, and Gerald H. Brusewitz

Irrigation schedules were evaluated on `Cresthaven' peach [Prunus persica (L.) Batsch.] to determine if water application could he reduced or omitted without affecting fruit size or yield. Tensiometers were used to schedule trickle irrigation during 1984-M. Treatments were no irrigation or irrigation when soil pressure potential at a 30-cm depth reached 40 or 60 kPa, respectively. When production began in 1986, trees were either irrigated until harvest (1-7 Aug.) or until October. Beginning in 1989, class A pan evaporation was used to schedule irrigation by replacing 60% of evaporation. Trees were irrigated from budbreak to harvest or October, from beginning of stage III fruit growth until harvest or October, or trees were not irrigated. The irrigation treatments were in factorial combination using sod middles, with annual ryegrass (Lolium multiforum Lam.) seeded under the trees or a sod-herbicide strip. The ryegrass was seeded in October, then killed at the onset of stage III fruit growth. Water application was reduced 32% to 57% when irrigation was discontinued after harvest compared to irrigation until October. Irrigation before stage III fruit growth did not affect fruit yield, size, or pruning weights compared to trees irrigated at the onset of stage III fruit growth. Trunk size was increased by irrigation; however, there were no differences in trunk size among irrigation treatments. Irrigation occasionally increased fruit size and yield compared to no irrigation. There were few differences in flower bud density, fruit set, yield, or fruit size among trees with reduced irrigation schedules compared to trees receiving irrigation from budbreak until October. Annual ryegrass decreased shoot growth in 1990 and flower bud density in 1991; however, fruit set was not affected. Annual ryegrass depleted excess soil moisture during the spring in some years, then conserved soil moisture after it was killed. Using sod with annual ryegrass under the trees may be a viable alternative to management with sodherbicide strips.

Free access

Niels O. Maness, Gerald H. Brusewitz, and T. Gregory McCollum

Impact testing was used to assess the variables related to bruise resistance for four peach [Prunus persica (L.) Batsch] cultivars. The effects of cultivar, ripeness, drop height, and firmness on fruit bruise incidence, bruise volume, respiration, and ethylene evolution rates of freshly harvested peaches were determined. The impact variables peak impact force, contact time, absorbed energy, and percent absorbed energy were measured at three stages of fruit ripeness and at three fruit drop heights. Each of the impact variables changed with fruit ripeness. Cultivars differed in their characteristic response to impact. Fruit impact, under the low to moderate impact energies used, had negligible effects on fruit respiration and ethylene production for the cultivars studied. Bruise incidence and volume increased with drop height and especially with advancing stage of ripeness. Under conditions we used, peach fruit bruise severity could be determined by either bruise incidence in or bruise volume of mesocarp tissue.

Free access

Niels O. Maness, Michael W. Smith, C. Zhang, and Gerald H. Brusewitz

Techniques to reduce the oil content of shelled pecans using supercritical CO2 have been developed, and the effect of partial oil extraction on kernel quality is being investigated. Extraction conditions induce little kernel damage and allow for up to 30% oil reduction. Extraction temperature, at 40 or 80C, influenced kernel color. Regardless of temperature, extracted nut meat was lighter in color. Testa color increased in redness for kernels extracted at 80C compared to kernels extracted at 40C. Extracted oil was amber. Fatty acid composition of oil obtained with supercritical CO2 was essentially the same as oil obtained by organic solvent extraction and by cold press. Investigations to determine the effect of oil reduction on pecan shelf life are described. This research was supported by U.S. Department of Agriculture grant 92-34150-7190, Oklahoma Center for Advancement of Science and Technology grant AR4-044, and the Oklahoma Agricultural Experiment Station.

Free access

Derek P. Whitelock, Gerald H. Brusewitz, Michael W. Smith, and Xihai Zhang

This study examined the effects of high humidity (>95%) and airflow on fresh peach [Prunus persica (L.) Batsch.] quality. Peaches were stored in high airflow at 98%, 88%, and 67% relative humidity (RH) (6, 5.6, and 4.3C, respectively) and negligible airflow at 100%, 95%, and 81% RH (6, 5.6, and 4.3C, respectively). Fruit weight loss, penetrometer force, impact variables, and bruise occurrence from a single 15-cm drop impact were measured over 20 days of storage. Fruit stored at a low vapor pressure deficit had a lower rate of weight loss, with drop impact values characteristic of firmer fruit than fruit stored at higher vapor pressure deficits. High airflow increased weight loss and decreased fruit firmness, but had only a secondary effect on localized humidity. Penetrometer force and bruise occurrence were less sensitive than drop impact variables in detecting differences in fruit firmness due to treatments.

Free access

Ravindranath V. Kanamangala, Neils O. Maness, Michael W. Smith, Gerald H. Brusewitz, and Sue Knight

Shelf life is a major problem in the marketing of pecans, particularly at the retail level. A procedure to extend the shelf life of pecans was described. The full-oil and supercritical carbon dioxide extracted (22% and 27% reduced-oil) native pecan kernels packaged in standard air mixture (21% O2, 79% N2), stored for up to 37 weeks at 25 °C and 55% RH, were subjected to hexanal analysis, sensory analysis, and determination of lipid class changes, that occur as the pecans age. Hexanal concentration of reduced-oil pecans was negligible throughout the storage, while full-oil pecans reached excessive levels by 22 weeks. Hexanal analysis was in agreement with the sensory scores. Free fatty acid lipid class was selectively extracted during the partial oil extraction process. Reduction in free fatty acids, and an overall reduction in lipid content on a per kernel basis, decreased the sites for oxidative deterioration and contributed to enhanced shelf-life of pecans. Work was supported by OCAST grant AR4-044 and the Oklahoma Agricultural Experiment Station.

Free access

Niels O. Maness, Jamal Bizri, Michael W. Smith, C. Zhang, and Gerald H. Brusewitz

Partial oil extraction is being investigated as a means to increase oxidative stability and provide reduced fat pecan halves. Supercritical extraction with carbon dioxide provided a means to extract twenty to thirty percent of resident oil, with little to no kernel damage and leaving no harmful residues in the kernel or the extracted oil. Variances in extraction time, temperature, pressure and total carbon dioxide volume used for extraction with a continuous flow extractor will be discussed. Fatty acid composition of oils extracted using supercritical carbon dioxide was essentially the same as oils obtained by solvent extraction and by cold press. Fatty acid yield in the oils was greater for supercritical extraction compared to the other two methods. Oxidative stability for extracted and unextracted pecans, determined using an accelerated aging technique, will be compared. Supported by USDA grant 92-34150-7190 and the Oklahoma Agricultural Experiment Station.

Free access

Brian A. Kahn, Phillip G. Shilling, Gerald H. Brusewitz, and Ronald W. McNew

Broccoli [Brassica oleracea L. (Italica Group)] crops may be rejected by wholesale buyers due to unacceptably tough stalks. Four experiments were conducted to examine the effects of various N levels and two within-row spacings (15 and 30 cm) on force to shear the stalk, stalk diameter, and yield of transplanted `Premium Crop' broccoli. Shear was not affected by within-row spacing, and average stalk diameter was decreased only 3 mm by reducing spacing from 30 to 15 cm. Although the 15-cm spacing sometimes produced the greatest total number of marketable, heads, this spacing resulted in higher cull head production, lower average marketable head weight, delayed maturity, and a lower percentage of field-planted transplants producing marketable heads than the 30-cm spacing. Increasing N fertilization decreased force to shear the stalk in only one experiment, when plants were exposed to water deficits and high temperatures. Nitrogen affected stalk diameter only when very low rates (37 and 74 kg·ha-1) were included. Yield of marketable-quality heads often showed no significant response to rates of applied N >112 kg·ha-1, particularly at the 30-cm spacing. Hollow stem was negligible in all experiments.

Free access

Ravindranath V. Kanamangala, Niels O. Maness, Michael W. Smith, Gerald H. Brusewitz, Sue Knight, and Bhaggi Chinta

The unextracted and reduced lipid (supercritical carbon dioxide extraction of 22% and 27% (w/w) of total lipids) pecan [Carya illinoinensis (Wangenh.) K. Koch] kernels packaged in 21% O2, 79% N2 were analyzed for color, hexanal, sensory, fresh weight, and lipid class changes periodically during 37 weeks of storage at 25 °C and 55% relative humidity. Pecan nutmeats were lightened by partial lipid extraction. The pecan testa darkened (decreasing chromameter L*) with storage time. Most color changes occurred in the first 18 weeks. Hexanal concentration of reduced-lipid pecans was negligible throughout storage, while unextracted pecans reached excessive levels by week 22 of storage. Hexanal concentration, indicative of rancidity, was in agreement with sensory analysis results with the hexanal threshold level for objectionable rancidity ranging from 7 to 11 mg·kg-1 pecans. Weight change was negligible during storage, except in 27% reduced-lipid pecans. Free fatty acids increased with storage and were significantly higher in unextracted pecans than the reduced-lipid pecans at 0, 10, 18, 32, and 37 weeks of storage. Shelf life of pecans with partial lipid extraction was longer than unextracted pecans. In addition to decreasing the total amount of lipid available for oxidation, the free fatty acid lipid component that correlated with the development of rancidity was reduced by extraction.