Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Geoffrey Meru x
Clear All Modify Search
Free access

Geoffrey Meru and Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R 2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R 2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R 2 = 17.9%) and linoleic acid (R 2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R 2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R 2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.

Free access

Geoffrey Meru and Cecilia McGregor

Egusi watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai subsp. mucosospermus var. egusi (C. Jeffrey) Mansf.] is known for its distinctive fleshy-pericarp seed phenotype and high seed oil percentage (SOP). The seed is part of the daily diet in West Africa where it is used in soups and stews or processed for cooking oil. Genetic mapping studies have revealed that most of the variation in SOP between egusi and normal, non-egusi seed is explained by the egusi (eg) locus, which is also associated with the unique seed phenotype. However, variation in SOP is also observed within egusi and normal seed types although the basis of this variation remains to be elucidated. A high correlation between kernel percentage (KP) and SOP has been observed in watermelon and other crops, and recent data also suggest an association between seed size and SOP in watermelon. The aim of this study was to elucidate the relationship among SOP, KP, and seed size traits in watermelon and to identify quantitative trait loci (QTL) associated with the latter traits to facilitate marker-assisted selection (MAS) for traits correlated with SOP. KP showed a significant (α = 0.05) positive correlation with SOP in both egusi and normal seed types, whereas seed size traits showed significant negative correlations with SOP. QTL associated with KP and seed size traits in normal seed were colocalized with a previously mapped locus for SOP on linkage group (LG) 2, but in egusi seed, a QTL explaining 33% of phenotypic variation in KP was localized on LG 7. The results of this study show that SOP in watermelon is correlated with KP and seed size, but KP is associated with different loci in normal and egusi seed phenotypes.

Restricted access

Geoffrey Meru and Cecilia E. McGregor

Fusarium wilt of watermelon (Citrullus lanatus), caused by Fusarium oxysporum f. sp. niveum (FON), is a devastating soil-borne disease limiting watermelon production across the world. Although many watermelon cultivars have been bred for resistance to FON races 0 and 1, the only released cultivars that are resistant to FON 2 are nonharvested pollenizers. The lack of FON 2–resistant edible cultivars is thought to be associated with linkage drag and/or preferential inheritance patterns observed when crossing the resistant, wild source (Citrullus amarus), with edible watermelon. A potential way to overcome these obstacles is to use a resistant C. lanatus as the source of resistance and to develop molecular markers to increase the efficiency of selection. Here we describe the identification of a quantitative trait locus (QTL) associated with FON 2 resistance in watermelon. The genotyping by sequencing (GBS) platform was used to generate single nucleotide polymorphisms (SNPs) in an F2 population (n = 178) developed from a cross between UGA147 (resistant) and ‘Charleston Gray’ (susceptible). Five hundred and one SNPs were placed on the watermelon physical map and used in the mapping of QTL. F3 lines were phenotyped for resistance to FON 2 in the greenhouse. An intermediate QTL associated with resistance to FON 2 was identified on chromosome 11 (Qfon11). This QTL is a potential target for marker-assisted selection (MAS) for FON 2 resistance in watermelon.

Restricted access

Njung’e Vincent Michael, Pamela Moon, Yuqing Fu and Geoffrey Meru

Phytophthora capsici Leonian, the causal agent of Phytophthora crown rot in squash (Cucurbita pepo L.), is an economically important pathogen worldwide. Currently, no C. pepo cultivars immune to the pathogen are commercially available, but sources of resistance to Phytophthora crown rot have been identified in a set of 16 C. pepo plant introductions (PIs). Knowledge of the genetic relationships among these accessions and their relatedness to economically important morphotypes of C. pepo would inform breeders’ best strategies for introgressing resistance; however, this information is currently lacking. The goal of the current study was to determine genetic diversity among the resistant accessions and their genetic relatedness to susceptible morphotypes of subspecies pepo (Zucchini and Pumpkin) and texana (Acorn, Straightneck, and Crookneck) using 39 SSR markers. The markers revealed 132 alleles averaging 4.40 alleles per locus and had a mean polymorphic information content (PIC) and gene diversity of 0.44 and 0.49, respectively. CMTp235 had the highest PIC and gene diversity of 0.80 and 0.82, respectively. Hierarchical clustering by UPGMA and principal coordinate analysis (PCOA) revealed grouping into two major C. pepo subspecies, texana and pepo, with all the resistant accessions grouping in the latter. In order of increasing genetic distance (GD), the resistant accessions were least distant to Zucchini (GD = 0.34), followed by Pumpkin (GD = 0.40), Crookneck (GD = 0.56), Acorn (GD = 0.60), and Straightneck (GD = 0.61) morphotypes. Mean GD among the resistant accessions was 0.31 and was highest between PIs 615142 and 615132 (0.61). Based on genetic similarity, PIs 174185 and 181761 (disease severity ≤1.4) would be the best sources of resistance for transfer into subspecies texana and pepo, respectively. Overall, the results presented here support a closer genetic relationship between the resistant accessions and morphotypes of subspecies pepo than those of subspecies texana.