Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Gehendra Bhattarai x
Clear All Modify Search
Restricted access

Gehendra Bhattarai and Shawn A. Mehlenbacher

From the genome sequence of hazelnut (Corylus avellana), 192 new polymorphic simple sequence repeat (SSR) markers were developed, characterized, and used to investigate genetic diversity in 50 accessions. Next-generation sequencing allows inexpensive sequencing of plant genomes and transcriptomes, and efficient development of polymorphic SSR markers, also known as microsatellite markers, at low cost. A search of the genome sequence of ‘Jefferson’ hazelnut identified 9094 fragments with long repeat motifs of 4, 5, or 6 base pairs (bp), from which polymorphic SSR markers were developed. The repeat regions in the ‘Jefferson’ genome were used as references to which genomic sequence reads of seven additional cultivars were aligned in silico. Visual inspection for variation in repeat number among the aligned reads identified 246 as polymorphic, for which primer pairs were designed. Polymerase chain reaction (PCR) amplification followed by agarose gel separation indicated polymorphism at 195 loci, for which fluorescent forward primers were used to amplify the DNA of 50 hazelnut accessions. Amplicons were post-PCR multiplexed for capillary electrophoresis, and allele sizes were determined for 50 accessions. After eliminating three, 192 were confirmed as polymorphic, and 169 showed only one or two alleles in each of the 50 cultivars, as expected in a diploid. At these 169 SSRs, a total of 843 alleles were found, for an average of 4.99 and a range of 2 to 17 alleles per locus. The mean observed heterozygosity, expected heterozygosity, polymorphism information content, and the frequency of null alleles were 0.51, 0.53, 0.47, and 0.03, respectively. An additional 25 primer pairs produced more than two bands in some accessions with an average of 6.8 alleles. The UPGMA dendrogram revealed a wide genetic diversity and clustered the 50 accessions according to their geographic origin. Of the new SSRs, 132 loci were placed on the linkage map. These new markers will be useful for diversity and parentage studies, cultivar fingerprinting, marker-assisted selection, and aligning the linkage map with scaffolds of the genome sequence.

Restricted access

Gehendra Bhattarai, Shawn A. Mehlenbacher and David C. Smith

Eastern filbert blight (EFB) is a serious fungal disease of european hazelnut (Corylus avellana) in North America. The causal agent is the pyrenomycete Anisogramma anomala, which is native in the eastern United States where it occasionally produces small cankers on the wild american hazelnut (C. americana). However, most commercial cultivars of european hazelnut are susceptible. Infection leads to perennial cankers, girdling of branches, and premature tree death. Cultural practices including scouting, pruning out infected branches, and fungicide applications are recommended to slow disease spread but are expensive and not completely effective. EFB resistance from ‘Gasaway’ is conferred by a dominant allele at a single locus and has been extensively used in the Oregon State University hazelnut breeding program, but there is concern that this resistance could be overcome by isolates now present in the eastern United States or that a new race of the pathogen could arise in Oregon. Segregation for EFB resistance from ‘Uebov’, a new source from Serbia, was studied in three progenies by a combination of structure exposure and greenhouse inoculation. The frequency of resistant seedlings following structure exposure was about 20% in all three progenies. The ratios failed to fit the expected 1:1 ratio but did fit a ratio of 1 resistant:3 susceptible, which would be expected if resistance were conferred by dominant alleles at two independent loci. Seedlings from a cross of susceptible selection OSU 741.105 and ‘Uebov’ were used to study correlation of disease response and presence of alleles at microsatellite marker loci. Resistance was highly correlated with the presence of alleles at marker loci on linkage group 6 (LG6), and these markers also showed segregation distortion. We conclude that EFB resistance from ‘Uebov’ maps to a single locus on LG6 in the same region as resistance from ‘Gasaway’, although only about 20% of the seedlings are resistant because of segregation distortion. ‘Uebov’ has large, well-filled, round nuts and is suitable as a parent in breeding for the in-shell market, but its low nut yields and a high frequency of shells with split sutures are the drawbacks. Its use would expand options for breeding and ‘Uebov’ resistance could be combined with other resistance alleles with an expectation of more durable EFB resistance. Durable resistance would not only sustain the hazelnut industry in Oregon but would also allow expansion of plantings to new areas.

Restricted access

Waltram Ravelombola, Ainong Shi, Jun Qin, Yuejin Weng, Gehendra Bhattarai, Bazgha Zia, Wei Zhou and Beiquan Mou

Impacts of drought stress on crop production can significantly impair farmer’s revenue, hence adversely impacting the gross national product growth. For cowpea [Vigna unguiculata (L.) Walp.], which is a legume of economic importance, effects of drought at early vegetative growth could lead to substantial yield losses. However, little has been done with respect to breeding for cowpea cultivars withstanding drought at early vegetative growth. In addition, previous investigations have focused on how plant morphology and root architecture can confer drought tolerance in cowpea, which is not sufficient in efforts to unravel unknown drought tolerance–related genetic mechanisms, potentially of great importance in breeding, and not pertaining to either plant morphology or root architecture. Therefore, the objective of this study was to evaluate aboveground drought-related traits of cowpea genotypes at seedling stage. A total of 30 cowpea genotypes were greenhouse grown within boxes and the experimental design was completely randomized with three replicates. Drought stress was imposed for 28 days. Data on a total of 17 aboveground-related traits were collected. Results showed the following: 1) a large variation in these traits was found among the genotypes; 2) more trifoliate wilt/chlorosis tolerance but more unifoliate wilt/chlorosis susceptible were observed; 3) delayed senescence was related to the ability of maintaining a balanced chlorophyll content in both unifoliate and trifoliate leaves; and 4) the genotypes PI293469, PI349674, and PI293568 were found to be slow wilting and drought tolerant. These results could contribute to advancing breeding programs for drought tolerance in cowpea.

Restricted access

Lingdi Dong, Waltram Ravelombola, Yuejin Weng, Jun Qin, Wei Zhou, Gehendra Bhattarai, Bazgha Zia, Wei Yang, Linqi Shi, Beiquan Mou and Ainong Shi

Previous investigations showed that accumulations of Na+ and Cl in leaves resulted in reductions in chlorophyll content, thereby affecting photosynthesis. Understanding how chlorophyll content evolves over time will help plant breeders to select cowpea genotypes with better tolerance to salinity by allowing them to choose those with more stable chlorophyll content under salt stress. The objective of this study was to assess how the chlorophyll content of cowpea genotypes changed over the course of 24 d of salt stress at the seedling stage. A total of 24 cowpea genotypes with different salt responses were used in this study. The experiment used a split-plot design with salt treatment as the main plot and cowpea genotypes as the subplot. In the main plot, there were two salt treatments: 0 mm (ionized water) and 200 mm NaCl. In the subplot, the cowpea genotypes were arranged as a completely randomized design with three replicates per genotype. The results revealed that: a1) the time × genotype interaction was significant under conditions with and without salt; 2) chlorophyll content slowly decreased in the salt-tolerant genotypes; 3) chlorophyll content slightly increased on day 6 and day 9 of salt stress in both moderate and sensitive genotypes, but it decreased at a faster rate than in the salt-tolerant genotypes; and 4) salt-sensitive genotypes were completely dead on day 24 of salt stress, whereas the salt-tolerant genotypes were able to maintain a significant amount of chlorophyll content. These results can be used to advance breeding programs for salt tolerance in cowpea.