Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: Gary W. Stutte x
- Journal of the American Society for Horticultural Science x
Strawberries (Fragaria xananassa Duch. .Osogrande.) were grown hydroponically with three NO3-N concentrations (3.75, 7.5, or 15.0 mM) to determine effects of varying concentration on NO3-N uptake and reduction rates, and to relate these processes to growth and fruit yield. Plants were grown for 32 weeks, and NO3-N uptake and nitrate reductase (NR) activities in roots and shoots were measured during vegetative and reproductive growth. In general, NO3-N uptake rates increased as NO3-N concentration in the hydroponics system increased. Tissue NO3-. concentration also increased as external NO3-N concentration increased, reflecting the differences in uptake rates. There was no effect of external NO3-N concentration on NR activities in leaves or roots during either stage of development. Leaf NR activity averaged ~360 nmol NO2 formed/g fresh weight (FW)/h over both developmental stages, while NR activity in roots was much lower, averaging ~115 nmol NO2 formed/g FW/h. Vegetative organ FW, dry weight (DW), and total fruit yield were unaffected by NO3-N concentration. These data suggest that the inability of strawberry to increase growth and fruit yield in response to increasing NO3-N concentrations is not due to limitations in NO3-N uptake rates, but rather to limitations in NO3 - reduction and/or assimilation in both roots and leaves.
Greenhouse grown 2-year-old potted `Jonathan' apple trees (Malus domestica Borkh.) were subjected to various levels of water stress in February. Midday leaf water potential (ψW), leaf osmotic potential (ψS), soluble sugars, and starch contents of mature leaves were measured throughout the development of water stress to determine whether active osmotic adjustment could be detected and whether carbohydrates were involved. Active adjustments of 0.6 MPa were observed 3 and 5 days, respectively, after water stress was initiated. Leaf turgor potential (ψP) could not be maintained through the osmotic adjustment when ψW dropped below -1.6 MPa. Sorbitol, glucose, and fructose concentrations increased while sucrose and starch levels decreased significantly as water stress developed, strongly suggesting that sugar alcohol and monosaccharide are the most important osmotica for adjustment. Sorbitol was a primary carbohydrate in the cell sap and accounted for > 50% of total osmotic adjustment. The partitioning of newly fixed W-labeled photosynthates in mature leaves was not affected by water stress immediately after the 30-min 14CO2 treatment. All the W-labeled carbohydrates decreased in the labeled leaves very rapidly after 14CO2 labeling. The decrease in 14C-sorbitol was greater than the decrease in other carbohydrates under both well-watered and stressed conditions. After 24 hours of water stress, however, the percentage of 14C-sorbitol increased while the percentages of sucrose, starch, glucose, and fructose decreased significantly with increasing levels of stress. The ratio of 14C-sorbitol in leaves with ψW = -3.5 MPa to leaves with ψW = -0.5 MPa was significantly higher than that of 14C-sucrose, 14C-glucose, W-fructose, or 14C-starch.
The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of `Norland' potato (Solanum tuberosum L.) was determined under high (412 ∝mol·m-2·s-1) and low (263 ∝mol·m-2·s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 μmol·m-2·s-1, and leaf starch increased from 70 to 129 and 118 mg·g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 μmol·mol-1) or CO2 saturation point (1100-1200 μmol·mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (≈15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (≥12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon, then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.
Lipase activity was studied during endodormancy in low-chilling-requiring `Anna' and high-chilling-requiring `Northern Spy' apples (Malus domestica Borkh.). Lipase activity greatly increased in bud axes when the chilling requirement of buds was almost satisfied regardless of the absolute chilling needed. Lipase activity greatly increased in `Anna' after 400 chill units (CU) and in `Northern Spy' after 2600 CU. This corresponded with an increase in budbreak at 22 to 24C. The increase in lipase activity also coincided with the release of water in buds from the bound to the free form. We propose that lipase(s) activity is an integral part of breaking dormancy and that lipase participates in causing changes in membrane lipid composition that coincides with releasing water into the free form.
Magnetic resonance imaging was used to determine water states in paradormant apple (Malus domestica Borkh.) buds and during early events when buds resumed growth. Proton density and states of water were determined by creating image maps of proton density and relaxation times (T2). Summer-dormant (paradormant) buds had T2 relaxation times up to 30 ms. This water in bud tissues is considered relatively free compared to water that had T2 relaxation times of <1 ms in other parts of the stem and bark. Buds were forced to grow either by pruning off the terminal bud or by starting the bud with thidiazuron (TDZ). Both treatments gave essentially the same results. After treatment, buds started to grow immediately and water moved into the stem and into the bud. As there was more free water in the bud, T2 values ranged up to 50 ms. There appeared to be an inhibitory gradient down on the shoot, which was removed temporarily by excising the top bud. However, between the 2nd and 10th day after removal of the top bud this dominance was reinstated by the highest bud on the stem, which eventually formed a shoot. TDZ treatment overcame this inhibitory gradient effect. There was also a growth potential gradient coinciding with the inhibitory gradient. The growth of lower buds was much slower than that of the upper buds. The growth potential gradient was not overcome by TDZ treatments.
A study was conducted to quantify the effects of rootstock and training system on C allocation in apple. Dry-matter distribution was determined at harvest in 5-year-old `Golden Delicious' apple (Malus domestica Borkh.) trees on four rootstocks (MM.111 EMLA, M.7a, M.26 EMLA, and M.9 EMLA) and in three training systems (three-wire palmette, free-standing central leader, and nonpruned). Mobilizable carbohydrate content was determined at harvest and leaf fall in trees from the same planting on MM.111 EMLA and M.9 EMLA in all three training systems. Training system effects interacted with rootstock effects in dry weights of branches and of fruit. Nonpruned system shoot and fruit dry weights reflected known rootstock vigor; whereas, pruned system (three-wire and central leader) shoot dry weights were greatest and fruit dry weights were lowest in trees on M.7a. Rootstock affected the partitioning of dry matter between above- and below-ground tree components, with MM.111 EMLA accumulating significantly more dry matter in the root system than trees on the other rootstocks. Trees in the central leader and the three-wire palmette systems partitioned more dry weight into nonbearing 1-year shoots than trees in the nonpruned system. Root starch content at harvest was greater in trees on MM.111 EMLA than on M.9 EMLA, and root sucrose and sorbitol were less in trees on MM.111 EMLA compared to M.9 EMLA. At leaf fall, starch in young roots was equal in trees on both rootstocks, and sorbitol again was lower in trees on MM.111 EMLA. Harvest starch content of roots, shoots, and branches was lower in nonpruned than in pruned trees. At leaf fall, root, shoot, and branch starch content increased in nonpruned and central leader-trained trees but did not increase in three-wire palmette-trained trees.