Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Gary Smith. x
  • All content x
Clear All Modify Search
Free access

W. Gary Smith

Native plant ecosystems, such as meadows and forests, demonstrate how plant communities are physically organized in response to a variety of natural factors and environmental processes. By visiting native ecosystems and diagramming the spatial patterns of naturally evolving plant communities, landscape design students quickly gain confidence about the variety of spaces they can create with plants. In addition, they develop an understanding that the physical organization of plants can have ecological meaning, deeper than simple utility, function, or decoration.

Free access

David Devenney, John Frett, Wallace Pill, and Gary Smith.

Ten 10 wildflower species grew satisfactorily in a 1:1 (vol.) mix of Ironrich (IR, mineral co-product of the titanium dioxide industry) and Fairgrow (FG, co-composted sewage sludge and solid waste). Shoot fresh weights in the low fertility IR and in the high fertility FG averaged 35% and 157%, respectively, those grown in IR+FG. Wildflower establishment in 10cm-deep outdoor seedbeds of IR, FG, or IR+FG were compared to those in soil (control) plots. Maximum percentage seedling emergence and emergence rate and synchrony were lower in FG than in IR, values in IR+FG being intermediate and similar to those for control plots. Shoot fresh weights, however, were greater from the IR+FG than from IR, FG or the control plots. Total shoot dry weights of wildflowers from 1 m2 subplots after 3 months were FG > IR = IR+FG > control, being respectively 8.4, 8.5, 5.1 and 1.1% those of total shoot dry weights of weeds.

Free access

Kanin J. Routson, Gayle M. Volk, Christopher M. Richards, Steven E. Smith, Gary Paul Nabhan, and Victoria Wyllie de Echeverria

Pacific crabapple [Malus fusca (Raf.) C.K. Schneid.] is found in mesic coastal habitats in Pacific northwestern North America. It is one of four apple species native to North America. M. fusca is culturally important to First Nations of the region who value and use the fruit of this species as food, bark and leaves for medicine, and wood for making tools and in construction. However, little is known about either distribution or genetic diversity of this species. To correct this deficiency, we used habitat suitability modeling to map M. fusca habitat types with species occurrence records. The species apparently occupies at least two distinct climate regions: a colder, drier northern region and a warmer, wetter southern region. Total area of modeled habitat encompasses ≈356,780 km2 of low-lying areas along the Pacific coast. A total of 239 M. fusca individuals sampled from across its native range were genetically compared using six microsatellite markers to assess for possible geographic structuring of genotypes. The primers amplified 50 alleles. Significant isolation by distance was identified across the ≈2600 km (straight line) where samples were distributed. These results may help establish priorities for in situ and ex situ M. fusca conservation.