Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Gary G. Grove x
Clear All Modify Search
Free access

Jill Marie Calabro, Robert A. Spotts and Gary G. Grove

Selected orchard practices were evaluated for their influence on powdery mildew infections (caused by Podosphaera clandestina) of sweet cherry in two orchards in Oregon. Three training systems (Spanish bush, steep leader, and central leader), four rootstocks (Edabriz, Maxma 14, Mazzard, Pontaleb), and five cultivars (cvs. Bing, Lapins, Regina, Staccato, and Sweetheart) were included in our studies. Mildew severity was significantly the highest on trees trained on the Spanish bush system (10.7% and 16.6% of leaf surface colonized in 2003 and 2004, respectively) when compared with Vogel central leader (2.7% and 10.8% of leaf surface colonized in 2003 and 2004, respectively) and steep leader (5.3% and 6.9% of leaf surface colonized in 2003 and 2004, respectively) systems. Foliar mildew infections were significantly the lowest on rootstock Edabriz (0.5% and 1.5% of leaf surface colonized in 2003 and 2004, respectively). A range of susceptibilities was noted among the cultivars tested. Cv. Regina had the lowest level of foliar mildew infections in both 2003 and 2004 (0.1% and 0% of leaf surface colonized, respectively), whereas cvs. Staccato and Sweetheart had the highest (32.6% and 33.4% of leaf surface colonized, respectively). Results indicate that selection of training system, rootstock, and cultivar may impact the severity of powdery mildew infestations in sweet cherry orchards.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

A detached leaf disk assay for screening sweet cherry (Prunus avium L.) genotypes for susceptibility to powdery mildew (PM) [Podosphaera clandestina (Wallr.:Fr.) Lev.] was developed by evaluating the effects of photoperiod (24 hours light, 0 hours light, 14 hours light/10 hours dark), substrate nutrient content (sterile distilled water, 1% sucrose), leaf age (old, young, emergent), and leaf explant size (intact leaf, 30 mm, 20 mm) on PM growth on leaves from the susceptible cultivar Bing. The only parameter described that had a significant (P ≤ 0.001) effect on PM growth was leaf age. Old leaves, designated as the third fully expanded leaf from the basal end of current-year's shoot growth, were never infected with PM under controlled inoculations. In the absence of significant differences between treatments, those parameters with the highest treatment means were selected for subsequent evaluation. To test the leaf disk assay, 14 sweet cherry cultivars were screened in two experiments, and rated according to level of PM susceptibility. Rank sum comparison of results from cultivars used for leaf disk screening agreed with earlier field rankings of the same cultivars. The developed leaf disk assay greatly reduced the space required to screen sweet cherry cultivars, and was a repeatable and objective predictor of field resistance that may be useful for screening germplasm or breeding populations.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwest U.S. are susceptible to powdery mildew caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (`PMR-1') was identified at the Washington State Unive. Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to characterize the inheritance of powdery mildew resistance from `PMR-1'. Reciprocal crosses between `PMR-1' and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and ëVaní) were made to generate segregating progenies for determining the mode of inheritance of `PMR-1' resistance. Progenies were screened for susceptibility to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny seedlings in a greenhouse and later by placement among infected trees in a cherry orchard. Progenies from these crosses were not significantly different (P > 0.05) when tested for a 1:1 resistant to susceptible segregation ratio, indicating that `PMR-1' resistance is conferred by a single gene, which we propose to designate as PMR-1.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

A personal computer-based method was compared with standard visual assessment for quantifying colonization of sweet cherry (Prunus avium L.) leaves by powdery mildew (PM) caused by Podosphaera clandestina (Wallr.:Fr.) Lev. Leaf disks from 14 cultivars were rated for PM severity (percentage of leaf area colonized) by three methods: 1) visual assessment; 2) digital image analysis; and 3) digital image analysis after painting PM colonies on the leaf disk. The third technique, in which PM colonies on each leaf disk were observed using a dissecting microscope and subsequently covered with white enamel paint, provided a standard for comparison of the first two methods. A digital image file for each leaf disk was created using a digital flatbed scanner. Image analysis was performed with a commercially available software package, which did not adequately detect slight differences in color between PM and sweet cherry leaf tissue. Consequently, two replicated experiments revealed a low correlation between PM image analysis and painted PM image analysis (r2 = 0.66 and 0.46, P ≤ 0.0001), whereas visual assessment was highly correlated with painted PM image analysis (r2 = 0.88 and 0.95, P ≤ 0.0001). Rank orders of the 14 cultivars differed significantly (P ≤ 0.05) when PM image analysis and painted PM image analysis were compared; however, rankings by visual assessment were not significantly different (P > 0.05) from those by painted PM image analysis. Thus, standard visual assessment is an accurate method for estimating disease severity in a leaf disk resistance assay for sweet cherry PM.

Free access

James W. Olmstead, Gregory A. Lang and Gary G. Grove

Most sweet cherry (Prunus avium L.) cultivars grown commercially in the Pacific Northwestern states of the United States are susceptible to powdery mildew, caused by the fungus Podosphaera clandestina (Wall.:Fr.) Lev. The disease is prevalent in the irrigated arid region east of the Cascade Mountains in Washington State. Little is known about genetic resistance to powdery mildew in sweet cherry, although a selection (PMR-1) was identified at Washington State Univ.'s Irrigated Agriculture Research and Extension Center that exhibits apparent foliar immunity to the disease. The objective of this research was to determine the inheritance of powdery mildew resistance from PMR-1. Reciprocal crosses were made between PMR-1 and three high-quality, widely-grown susceptible cultivars (`Bing', `Rainier', and `Van'). Resultant progenies were screened for reaction to powdery mildew colonization using a laboratory leaf disk assay. Assay results were verified by natural spread of powdery mildew among the progeny in a greenhouse and later by placing them among infected trees in a cherry orchard. Segregation within the progenies for powdery mildew reaction fit a 1 resistant: 1 susceptible segregation ratio (P ≤ 0.05), indicating that resistance to powdery mildew derived from PMR-1 was conferred by a single gene.