Search Results
Citrus greening, or huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), threatens the global citrus industry. Field observations have demonstrated that some citrus cultivars are more tolerant to the CaLas pathogen than others. ‘Parson Brown’ is an early maturing sweet orange variety that has consistently exhibited minimal leaf and fruit drop in the field compared with the ‘Hamlin’ sweet orange under similar conditions. This study aimed to understand performance of the ‘Parson Brown’ cultivar in several locations across the citrus production regions of Florida. Results indicated that the CaLas bacterial titer in both cultivars were similar with the quantitative polymerase chain reaction cycle threshold values ranging between 24.99 and 28.61 in ‘Hamlin’ and between 25.48 and 30.89 in ‘Parson Brown’. Leaves from the ‘Parson Brown’ trees however demonstrated higher chlorophyll content and total phenolic compounds in most of the locations. We also detected higher relative expression of CsPR1 and CsPR2 transcripts in ‘Parson Brown’ leaves in the first sampling period (March) and the fourth period (November). Additionally, Phloem protein 2 transcripts were downregulated in ‘Parson Brown’ leaves compared with ‘Hamlin’ at all locations. The ‘Hamlin’ juice had higher acidity, whereas ‘Parson Brown’ juice demonstrated a higher Brix to acidity ratio and juice color. The oil content in the juice ranged between 0.020% and 0.042%, and there was variation in the oil content between the locations, which could indicate clonal differences. ‘Parson Brown’ juice however contained higher limonin and nomilin content than ‘Hamlin’ juice in most of the locations. Taken together, the current results confirmed the enhanced tolerance of ‘Parson Brown’ trees to HLB when compared with ‘Hamlin’ in all sampled locations.
Lettuce (Lactuca sativa L.) is planted in Florida starting late fall at the end of September and continuing through the last harvest in May. In recent years, the season has shortened because of warm temperatures and weather-related events, such as rainfall at the beginning and the end of the season. During the transition between summer production in the Western U.S. lettuce season and the beginning of Florida’s winter production, there may be shortages of lettuce and other leafy vegetables in U.S. East Coast markets. In this research, we evaluated a set of lettuce breeding lines and cultivars in both sand and muck soils and a subset of romaine lettuces to determine whether lettuce planted in Florida’s sandy soils could help meet the supply shortage in the delay between the Western and Eastern U.S. lettuce seasons. Significant genetic variation and genotype × environment (G×E) interactions were observed among lettuce genotypes when planted in both sand and muck soils, suggesting that lettuce cultivars should be adapted and bred specifically for sandy soils. Romaine and butterhead lettuce lines produced higher yield in sandy soils; a particular romaine breeding line (BG18-0588) had good yield and less heat-related disorders when planted in warmer temperatures. Producing lettuce in sandy soils may have a higher production cost because of additional specific practices such as transplant production, plastic mulch, and fertigation, but these costs may be offset by increased productivity due to better weed control and nutrient timing. However, a future analysis should be conducted to elucidate the economic feasibility of producing lettuce in sandy soils.