Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Gao-jie Sun x
Clear All Modify Search

Cold hardiness evaluation is important for screening woody species in cold areas. We compared cold hardiness by estimating the 50% lethal temperature (LT50) using electrolyte leakage test (ELLT50) and triphenyltetrazolium chloride test (TTCLT50) for 26 woody species in the Bashang region of China. One-year-old shoots were collected in January and exposed to five subfreezing temperatures in a programmable temperature and humidity chamber. LT50 was estimated by fitting relative electrolyte leakage and percentage of dead tissue against test temperature. For all tested species, triphenyltetrazolium chloride (TTC) staining of the pith was weak and the cambium TTCLT50 was lower than the extreme minimum temperature (−37 °C) recorded in the region. The cambium TTCLT50 and the sd were lower than that for the phloem and xylem. The phloem TTCLT50 was lower than the xylem TTCLT50, and the two sds were similar. The ELLT50 showed no significant correlation with any TTCLT50. For most species, the ELLT50 was higher than the cambium and phloem TTCLT50 and was not significant different with the xylem TTCLT50. The ELLT50 showed higher sd than any tissue TTCLT50. Based on results obtained in this study, when choosing cold hardiness of single stem tissue as an indicator for screening woody species, the xylem should be considered first, followed by the phloem; the cambium and pith were unsuitable. The cold hardiness estimated by ELLT50 was more suitable as indicator for screening woody species than that of stem tissue in winter estimated by TTCLT50.

Open Access

Tree peonies are valuable ornamental plants and are widely cultivated in China and many other countries. Gray mold caused by Botrytis cinerea is an increasingly severe disease in Luoyang of China and seriously affects the ornamental value of tree peonies both in the open air and in greenhouses. However, the resistance of different tree peony cultivars to B. cinerea remains unknown. In this study, 15 tree peony cultivars belonging to three different flowering times were evaluated for resistance to B. cinerea by detached leaf assay measure. Results showed that the resistance of early-flowering peonies was stronger than that of later flowering peonies. Moreover, the correlation between flowering time and resistance of tree peonies was extremely significant (P < 0.01). The information obtained in this study can provide theoretical basis both for further exploring the resistance genes of tree peony to B. cinerea and for the prevention and controlling of the gray mold.

Free access