Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Gale McGranahan x
Clear All Modify Search
Free access

Gale McGranahan and Chuck Leslie

Free access

John E. Preece and Gale McGranahan

Luther Burbank began making controlled crosses between walnut species in the late 19th century after hearing about a “supposed natural European hybrid walnut.” He crossed Juglans hindsii (northern California black walnut) × J. regia (Persian walnut) and produced progeny that he named ‘Paradox’ because of its extremely fast growth and other “anomalies.” He also crossed two American species, J. hindsii × J. nigra (eastern black walnut), producing ‘Royal’ walnut progeny that were fast-growing and prolific nut producers. A third interspecific hybrid was a cross between J. ailantifolia (Japanese walnut) × J. regia that resulted in extremely vigorous progeny but was not named. He observed segregation in the F2 populations and described giants and dwarfs as reversions to ancestral forms. Luther Burbank also made selections for walnut scion cultivars and was especially interested in thin-shelled nuts. He collected seeds from a J. regia growing in San Francisco because it produced regularly and had very high-quality nuts with relatively thin but poorly sealed shells. He selected one of its seedlings as ‘Santa Rosa Soft-Shell’ and described it as bearing large crops of nuts that were nearly white with thin shells and delicious white meat. Burbank’s contributions to the walnut industry endure to this day, especially through the widespread use of seedling and clonal ‘Paradox’ walnut rootstocks.

Free access

Keith Woeste, Gale H. McGranahan and Robert Bernatzky

Twenty-five random decamer primers were used to evaluate the level of polymorphism between Persian walnut and the Northern California black walnut. Sixty-six randomly amplified polymorphic DNA (RAPD) markers were identified using an interspecific walnut backcross population [(Juglans hindsii × J. regia) × J. regia]. Segregation data from these polymorphisms were joined to a previously published set of restriction fragment-length polymorphism (RFLP) marker data to expand the genetic map of walnut to 107 markers in 15 linkage groups.

Free access

Keith Woeste, Gale McGranahan and Robert Bernatzky

A first backcross population of walnuts {[Juglans hindsii (Jeps.) Jeps. × Juglans regia L.] × J. regia} was used to evaluate the correlation between morphological (statistical) and genetic distance during introgression. Five traits based on leaf morphology were identified to quantitate the morphology of the parental species, their F1 hybrids, and the backcrosses to each parent. These traits were used to evaluate the morphological similarity of first backcrosses to J. regia using Mahalanobis' distance. The amount of genomic introgression of each backcross was estimated using 59 randomly amplified polymorphic DNA (RAPD) and 41 restriction fragment-length polymorphism (RFLP) genetic markers that identify polymorphisms between J. regia and J. hindsii. A smaller scaffold set of markers was also identified using published linkage data. The correlation between the measures of morphological and genomic introgression for the first backcrosses was low (0.23) but significant. The results suggest that selection based on morphology during backcrossing will not be an effective way to recover recurrent parent genome.

Free access

Kourosh Vahdati, Charles Leslie, Zabihollah Zamani and Gale McGranahan

In vitro rooting of three commercial cultivars of Persian walnut (Juglans regia L.), `Sunland', `Chandler', and `Vina', was examined using a two-phase rooting procedure: root induction in the dark on Murashige and Skoog (MS) medium with 15 μm IBA followed by root development in the light on a mixture of one-quarter strength Driver Kuniyuki Walnut (DKW) basal medium and vermiculite (1:1.25, v/v). Rooting percentages were: `Sunland' (94%), `Chandler (55%), and `Vina' (27%). A positive relationship was observed between the vigor of cultivars and rooting ability, but shoot length did not affect rooting success. Rooting was optimum when shoots were cultured on root induction media for 6 to 8 days. Increasing the sucrose level in the root induction medium to 40 g·L-1 improved rooting, and shoots induced to root at 22 °C rooted more readily than those induced at 30 °C. Either increasing or decreasing the nitrogen level in the multiplication medium had a negative effect on rooting. Rooted walnut shoots often cease growth during acclimatization, resulting in shoot rosetting. Spray application of Promalin® (25 mL·L-1) caused buds to break and induced elongation of shoots. Chemical name used: indole-3-butyric acid (IBA).

Free access

Keith Woeste, Douglas Shaw, Gale McGranahan and Robert Bernatzky

We characterized a population of hybrids between English walnut and Northern California black walnut (Juglans regia X J. hindsii) and their backcrosses (BC) using both genomic markers and morphological traits. ANOVA and regression methods were used on three years' data to identify a subset of five variables that describe the morphological variability among backcross populations and their parents (R2 = 0.89). Genomic markers were identified using randomly amplified polymorphic DNA (RAPD). A subset of 60 markers specific to the donor species (J. hindsii) were scored in 50 backcrosses to estimate the percent recipient genome in each evaluated BC. The backcrosses were ranked using each method of evaluation; correlation between the ranks was 0.423 and highly significant. Each evaluation method has advantages but neither was able to reliably identify elite progeny.

Free access

Chuck A. Ingels, Gale H. McGranahan and Ann C. Noble

To determine if flavor differences could be detected among several Persian walnut (Juglans regia L.) cultivars, difference tests with eight cultivars were conducted using the duo-trio method. No differences were found when `Hartley' was compared to `Vina', `Scharsch Franquette', and `Mayette'. However, `Chandler', `Chico', `Howard', and `Sunland' were significantly different, and paired comparisons were then used to test these cultivars against `Hartley' in terms of several flavor characteristics. No differences in astringency and “walnut flavor” were detected; however, `Chandler' was judged to be sweeter than `Hartley', which was sweeter than `Howard'. `Chico' was found to be the firmest cultivar.

Free access

Keith E. Woeste, Gale H. McGranahan and M.N. Schroth

Walnut blight of English walnut (Juglans regia L.), incited by Xanthomonas campestris pv. juglandis (Pierce) Dowson, causes significant crop loss in California. To assess levels of resistance in walnut germplasm, leaves and nuts of mature walnut genotypes were inoculated with X. campestris pv. juglandis. Significant differences were found among cultivars in size and frequency of lesions on leaves and in frequency of abscission of diseased leaves. Cultivars also varied in frequency of abscission of nuts following infection and in marketability of infected nuts. Afthough there was considerable variation in disease levels over 2 years, leaves of PI 159568 consistently received significantly higher disease ratings than leaves of `Chandler' or `Adams'. Nuts of `Adams', `Payne', PI 18256, and `Sinensis 5' abscised less frequently following inoculation than nuts of other cultivars. In addition, the quality of infected nuts that did not abscise was consistently better for PI 18256 and `Sinensis 5'. The rank of cultivars for levels of disease in inoculated leaves was not significantly correlated with the rank of cultivars for frequency of infestation of dormant buds associated with infected foliage. The apparent resistance of walnut germplasm may be affected by the abscission or necrosis of infected tissues.

Free access

Robert G. Fjellstrom, Dan E. Parfitt and Gale H. McGranahan

RFLP markers were used to study genetic diversity among California walnut (Juglans regia L.) cultivars and germplasm collected worldwide. 16 of 21 RFLP markers were polymorphic in the 48 walnut accessions tested. Seven RFLP markers permitted unique identification of all walnut cultivars. All genotypes were heterozygous at approximately 20% of the loci for both California and worldwide germplasm. California walnut germplasm contained 65% of the worldwide allelic diversity. Cluster analysis of genetic distance between accessions and principal component analysis of allelic genotypes showed two major groups of walnut domestication. California germplasm was associated with germplasm from France, Central Europe, and Iran, and had less genotypic similarity with germplasm from Nepal, China, Korea, and Japan.