Search Results
Annual bluegrass (Poa annua L.) can be a troublesome weed to control in established turfgrass stands; it has developed herbicide resistance after repeated use of products with similar modes of action, and several new herbicides have been registered for use on turfgrasses. Four field studies were conducted near Clemson, S.C., from 2003 through 2005 to evaluate postemergence annual bluegrass control in dormant, nonoverseeded bermudagrass [Cynodon dactylon (L.) Pers.] turf using various herbicides applied in either December or February of each year and rated in the spring. Annual bluegrass control can be accomplished in dormant, nonoverseeded bermudagrass turf using a wide range of products applied in either December or February. Flazasulfuron, foramsulfuron, glufosinate, glufosinate + clethodim, glufosinate + glyphosate, glyphosate + clethodim, glyphosate + diquat, pronamide, rimsulfuron, and trifloxysulfuron provided 87% or greater annual bluegrass control regardless of application timing. Imazaquin and simazine controlled annual bluegrass greater than 85% when applied in December but less than 80% when applied in February. Glyphosate provided 93% annual bluegrass control when applied in February but only 72% control with December applications. No detrimental effects on bermudagrass spring greenup were observed for any herbicide treatment or application time. The availability of several effective herbicide options with differing modes of action provides turfgrass managers with the opportunity to use herbicide rotations that may prevent, or at least delay, the development of resistant annual bluegrass populations to these chemical products.
A 0.2-ha reclaimed minesoil site near Welch, W.Va., was amended with sewage sludge, hardwood bark, and a sorghum–sudan hybrid green manure crop to demonstrate production of horticultural crops. A selection of crops, including white birch, forsythia, zinnia, tomato, yarrow, red raspberry, and strawberry, was planted and grown. Plant growth and development, including flower and fruit production, tended to be enhanced by sludge-amended soils and reduced in green manure and hardwood bark–amended soils. Sludge increased pH, Ca, P, and Mg levels above that in the other treatments. Hardwood bark increased Mn but decreased P. The green manure amendment increased soil Fe content. In 1994 `Allstar' strawberry yield and berry weights were similar for all plots, but yield was about 10% of expected and was very close to the economic break-even point. Third-year yield of 1992 planted `Heritage' raspberries was about one-half the expected yield of 5000 lbs/acre, but still considered profitable. Zinnia flower production yielded a calculated 32% return on investment. Assuming that 50% forsythia plants were saleable in 2 years, return on investment was projected to be 30%. For white birch, assuming half were saleable in 4 years, a 16% return on investment was projected.
Greenhouse studies were conducted at the Univ. of Florida to evaluate the effects of preemergence herbicides on St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] rooting. Metolachlor, atrazine, metolachlor + atrazine, isoxahen, pendimethalin, dithiopyr, and oxadiazon were applied to soil columns followed by placement of St. Augustinegrass sod on the treated soil. Root elongation and biomass were measured following application. Plants treated with dithiopyr and pendimethalin had no measurable root elongation and root biomass was severely (>70%) reduced at the study's conclusion (33 days). Root biomass was unaffected following isoxaben and oxadiazon treatments, but oxadiazon applied at 3.4 kg·ha-1 reduced root length by 50%. Atrazine at 2.2 kg·ha-1 and metolachlor + atrazine at 2.2 + 2.2 kg·ha-1, did not reduce root length in one study, while the remaining atrazine and metolachlor + atrazine treatments reduced cumulative root length and total root biomass 20% to 60%. Metolachlor at 2.2 kg·ha-1 reduced St. Augustinegrass root biomass by >70% in one of two studies. St. Augustinegrass root elongation rate was linear or quadratic in response to all treatments. However, the rate of root elongation was similar to the untreated control for plants treated with isoxaben or oxadiazon. Chemical names used: 6-chloro-N-ethyl-N'-(l-methylethyl)-1,3,5-triazine-2,4-diamine(atrazine);S,S-dimethyl2-(difluoromethyl)-4-(2-methylpropyl)-6-(t∼fluoromethyl)-3,5-pyridinecarbothioate (dithiopyr); N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyl]-2,6-dimethoxybenzamide (isoxaben); 2-chloro-N-(2-ethyl- 6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin).