Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: G. Cameron Somodi x
Clear All Modify Search


Tomato (Lycopersicon esculentum Mill.) accession PI 270248 (‘Sugar’) had high levels of resistance to bacterial spot [incited by Xanthomonas campestris pv. vesicatoria (Doidge) Dye] on fruit, but foliage was susceptible. Hawaii 7998 (H7998) was highly resistant to foliar infection, but was intermediate in resistance to fruit infection. Fruit spot on hybrids between ‘Sugar’ and H7998 was usually intermediate to the parents. Occasionally, disease incidence of hybrids was not statistically different from one or both parents, but tended to resemble ‘Sugar’ more closely than H7998. There were no significant differences between reciprocal hybrids, indicating a lack of cytoplasmic inheritance. Under low disease incidence, hybrids between ‘Sugar’ and ‘Walter’ (susceptible to bacterial spot on fruit and foliage) had fruit spot incidence similar to ‘Sugar’ and significantly less than ‘Walter’. Thus, there was a high level of dominance for resistance to bacterial spot on fruit.

Open Access

A `spray-inoculation seedling screening procedure was developed for detecting resistance to Xanthomonas campestris pv. vesicatoria (Doidge) Dye, causal agent of bacterial spot of tomato (Lycopersicon esculentum Mill.). Two-week-old transplants were preconditioned under 95% humidity for 16 hours before spray inoculation and then rated for bacterial spot 2 weeks later. Resistant plants could also be distinguished from susceptible genotypes using a modified bacterial speck [Pseudomonas syringae pv. tomato (Okabe) Young, Dye, and Wilkie] screening procedure (cotyledon-dip technique). When results of both screening methods were compared to field ratings from three previous seasons, significant correlations were more frequently observed for the spray-inoculation method. In Summer 1991, individual plants were evaluated by the spray-inoculation technique and then were placed in the field to determine susceptibility under field conditions. Correlations (r = 0.28 to 0.34) between spray-inoculation seedling screening ratings and field ratings, although low, were significant (P ≤ 0.0001). More than 90% of susceptible plants could be eliminated, saving labor, space, and time.

Free access

Resistant Hawaii 7981 (P1) was crossed with susceptible Fla. 7060 (P2), and F1, BCP1, BCP2, and F2 generations were obtained. Hypersensitive reactions (Hr) were measured 24 and 48 hours after inoculation in growth chambers at 24 and 30C. At 30C, there was no Hr. At 24C and 24 hours, 100% of Hawaii 7981 plants, 54.2% of BCP1 plants, and 21.7% of F2 plants had Hr. At 24C and 48 hours, 100% of Hawaii 7981, the F1, and BCP1 plants; 50% of BCP2 plants; and 73.3% of F2 plants had Hr. Other plants were inoculated and rated for race T3 in the field. Disease for each generation was significantly different (P < 0.05) and their order from most to least resistant was P1, BCP1, F1, F2, BCP2, and P2. The F1s were distributed between the parents with slight overlaps. BC plants had bimodal peaks similar to the F1 and their respective parents. The F2 had three peaks corresponding to P1, F1, and P2. The data suggest Hr and field resistance are controlled by the same incompletely dominant gene.

Free access