Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: G. Burge x
Clear All Modify Search

Abstract

Withholding irrigation (WI), followed by regulated deficit irrigation (RDI) at 2 levels, were compared with conventionally scheduled irrigation during rapid vegetative growth on ‘Bartlett’ pear (Pyrus communis L.) trees. All trees were irrigated at an increased common level during subsequent rapid fruit growth, by which time most vegetative growth had ceased. Irrigation effects were studied at 3 tree spacings (4 × 1 m, 4 × 0.75 m, and 4 × 0.5 m). Shoot and frame growth was related directly to early irrigation treatment before summer pruning. However, significant shoot growth that was reinitiated following summer pruning during one year increased on RDI treatments. The improved tree water status gained by changing from RDI to full irrigation in both years and from WI to RDI in the first year stimulated the growth rate of the total crop on the RDI treatments. Gross yield was increased significantly by WI and RDI in both years. Blossom density also was increased. Preliminary WI increased the control of vegetative growth by RDI when the soil was wet at flowering.

Open Access

Abstract

After initially withholding irrigation (WI) to dry out the root zone of pear trees, regulated deficit irrigation (RDI) applied to replace 23% and 46% of evaporation over the planting square (Eps) was compared with 69% and 92% Eps applied during the WI and RDI periods, respectively (full irrigation). Irrigation was increased to 120% Eps on all treatments after rapid fruit growth commenced. Leaf water potential (ψ1) measured at dawn and midday became less negative during RDI than during WI but in both periods was more negative than the control (69%/92% Eps). On the other hand, ψ1 of treatments receiving WI and RDI became less negative than the control when all irrigation treatments were increased to 120% Eps. Withholding irrigation followed by RDI reduced vegetative growth by 52%. In contrast, however, WI did not inhibit fruit growth, while, during RDI following WI fruit, growth was stimulated. A similar but greater stimulation of fruit growth (consistent with relatively less negative ψ1) was measured on WI/RDI plants when all treatments received 120% Eps. This stimulation of fruit growth increased yields by about 20%. The results indicate fruit osmoregulate to maintain and/or increase growth at the expense of inhibited vegetative growth when WI and or RDI reduce ψ1 in spring to values approaching −0.5 MPa at dawn.

Open Access