Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: G. Ananthakrishnan x
Clear All Modify Search

Hypocotyl explants of three cultivars of melon (Cucumis melo L.) (cvs. Revigal, Topmark and Kirkagac), and a cucumber (C. sativus L. cv. Taoz) rapidly directly regenerated multiple shoots on Murashige and Skoog medium augmented with 4.4 μm benzyladenine. Regeneration from the hypocotyl resulted in nearly 100% diploid shoots, whereas regeneration from the cotyledons resulted in 40% to 70% polyploid regenerants. Regeneration from cotyledon explants of melon cv. Revigal required light, whereas regeneration from hypocotyl explants of melon cv. Revigal occurred in both light and darkness. Direct regeneration also occurred from the hypocotyl of cucumber cv. Taoz in both light and darkness, even though cotyledonary explants did not regenerate buds or shoots under the same conditions. This is the first report of regeneration from the Cucumis genus producing a fully diploid plant population.

Free access

No presently available rootstock combines all the available rootstock attributes necessary for efficient long-term citriculture (production and harvesting) of Mexican limes and other commercially important scions. In the present study, somatic hybridization techniques were used to combine the widely adapted Amblycarpa mandarin (also known as Nasnaran mandarin) with six different trifoliate/trifoliate hybrid selections: Benton, Carrizo, and C-35 citranges; Flying Dragon and Rubidoux trifoliate oranges; and a somatic hybrid of sour orange + Flying Dragon. The ultimate goal of this research is to generate polyploid somatic hybrids that express the complementary horticultural and disease resistance attributes of the corresponding parents, and have direct potential as improved tree-size controlling rootstocks. Somatic hybrids from all six parental combinations were confirmed by a combination of leaf morphology, flow cytometry, and randomly amplified polymorphic DNA (RAPD) (for nuclear hybridity) and cleaved amplified polymorphic sequence (CAPS) analyses (for mtDNA and cpDNA). This is the first report of citrus somatic hybridization using Amblycarpa mandarin. Unexpected hexaploid somatic hybrid plants were recovered from the fusion of Amblycarpa mandarin + C-35 citrange. Hexaploid hybrids should be very dwarfing and may have potential for producing potted ornamental citrus. Resulting somatic hybrid plants from all six combinations have been propagated by tissue culture and/or rooted cuttings and are being prepared for commercial field evaluation for their potential as improved rootstocks for Mexican lime and other important scions.

Free access