Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Fumio Tamura x
  • Refine by Access: All x
Clear All Modify Search
Free access

Caixi Zhang, Kenji Tanabe, Fumio Tamura, Akihiro Itai, and Shiping Wang

The aim of this study was to investigate the roles of spur characteristics and carbon partitioning in regulating cultivar differences in fruit size of two late-maturing japanese pear cultivars, `Atago' and `Shinkou'. The study of spur characteristics showed that the two cultivars displayed different patterns in leaf development, flower characteristics, fruit growth, and shoot type. In contrast to `Atago' with dramatically larger fruit, `Shinkou' is a heavily spurred cultivar with a higher total leaf area and leaf number per spur early in fruit growth, less vegetative shoots, and smaller fruit but larger core. No significant differences were obtained in specific leaf weight, leaf thickness, chlorophyll content, and net photosynthesis of mature leaves, and seed number per fruit between the two cultivars. The results of trace experiment with 13C revealed that on a spur basis, there were no significant differences in the amount of 13C assimilate produced by spur leaves on each labeling date except at 190 days after anthesis, however, there were highly significant differences in the amount of 13C allocated to fruit between cultivars. Moreover, a higher amount of 13C assimilates was allocated to `Atago' flesh (or fruit) than that in `Shinkou'. Analysis of relative sink strength (RSS) indicates that the sink strength of fruit was dominant over those of other organs in the spur measured in both cultivars except at the early stage of fruit growth. `Atago' exhibited a greater RSS of fruit and lower losses of 13C for respiration and export than `Shinkou'. These results suggest that the movement of photosynthates into the fruit was determined by sink strength of the fruit rather than the source strength in the two cultivars.

Free access

Yuanwen Teng, Kenji Tanabe, Fumio Tamura, and Akihiro Itai

A total of 118 Pyrus sp. (pear) and cultivars native mainly to east Asia were subjected to randomly amplified polymorphic DNA (RAPD) analysis to evaluate genetic variation and relationships among the accessions. Two hundred fifty RAPD markers were scored from 20 decamer primers. RAPD markers specific to species were identified. Clustering analysis revealed two divisions: one comprising cultivars of P. communis L., and the other including all accessions of Pyrus native to east Asia. The grouping of the species and cultivars by RAPD data largely agrees with morphological pear taxonomy. However, some noted incongruence existed between two classification methods. Pyrus calleryana Dcne. clustered together with P. koehnei Schneid., P. fauriei Schneid. and P. dimorphophylla Makino. Pyrus betulaefolia Bge. clustered with P. ×hopeiensis Yu and P. ×phaeocarpa Rehd. A noncultivated clone of P. aromatica Kikuchi et Nakai grouped with P. aromatica cultivars. Pyrus hondoensis Nakai et Kikuchi and cultivars of P. ussuriensis Max. formed a single group. Some accessions from Korea (named Korean pear) had species-specific RAPD markers and comprised an independent group. Most of the Chinese white pears clustered together with most of the Chinese sand pears. Based on the present results, the new nomenclature P. pyrifolia var. sinensis (Lindley) Teng et Tanabe for Chinese white pear was suggested. Most accessions of Japanese pears fell into one main group, whereas pear cultivars from Kochi Prefecture of Japan subclustered with some Chinese sand pears and one accession from Korea. Our results infer that some local Japanese pear cultivar populations may have been derived from cultivars native to Kochi Prefecture in Shikoku region, and that the latter may have been introduced from ancient China and/or Korea.

Free access

Fumio Tamura, Kenji Tanabe, Akihiro Itai, and Hiroshi Tanaka

The dormancy of Japanese pear (Pyrus pyrifolia Nakai) floral buds was broken by prolonged chilling or short-term high-temperature treatment (45 °C for 4 hours). Changes in the protein profiles of the floral buds were studied using two-dimensional electrophoretic analysis (2-DE). The quantities of nine cold-induced proteins (CIPs) increased in the floral buds with increases in chill unit (CU) value, but did not change rapidly when bud dormancy was near completion. When dormancy of floral buds was broken by high-temperature treatment, nine heat-shock proteins (HSPs) accumulated. These HSPs were distinct from the CIPs. The isoelectric point of the 19-kDa CIP shifted to the basic side by high-temperature treatment as well as by chilling. These results suggest that the 19-kDa protein may be a usable marker to measure the degree of bud dormancy in Japanese pear.

Free access

Benjamin Ewa Ubi, Daisuke Sakamoto, Yusuke Ban, Takehiko Shimada, Akiko Ito, Ikuko Nakajima, Yoshihiro Takemura, Fumio Tamura, Toshihiro Saito, and Takaya Moriguchi

To understand the role of the MIKC-type dormancy-associated MADS-box (DAM) genes in the regulation of endodormancy in japanese pear (Pyrus pyrifolia), we isolated two DAM genes from ‘Kosui’ and characterized their expression throughout the seasonal endodormancy phases in ‘Kosui’, as well as in TP-85–119 taiwanese pear (P. pyrifolia), which is a less dormant type. Several copies of the corresponding DAM genes are present in the P. pyrifolia genome. Rapid amplification of cDNA ends enabled the isolation of two full-length cDNAs, designated as PpMADS13–1 and PpMADS13–2, with complete open reading frames encoding 227 and 234 amino acids, respectively. Multialignment of the two ‘Kosui’ and the database DAM genes (based on the deduced amino acid sequences) showed that PpMADS13–1 and PpMADS13–2 were highly identical to the Rosaceae DAM genes and encoded the conserved domains characteristic of other MIKC-type MADS-box genes. The phylogenetic relationships showed that PpMADS13–1 and PpMADS13–2 were more closely related to the Prunus DAM, though they formed a unique subclade. The specific expression analysis of PpMADS13–1 and PpMADS13–2 by real-time polymerase chain reaction showed that both DAM genes are gradually down-regulated concomitant with endodormancy breaking. PpMADS13–1 and PpMADS13–2 showed similar fluctuations in expression patterns, although PpMADS13–2 was more highly expressed relative to PpMADS13–1. The expression of PpMADS13–1 and PpMADS13–2 in the less dormant taiwanese pear, TP-85–119, was quite low (nearly zero level), which is consistent with a down-regulated pattern of expression of the DAM genes in japanese pear, peach (Prunus persica), and japanese apricot (Prunus mume). Differential genomic DNA methylation patterns detected in PpMADS13–1 and PpMADS13–2 were not concomitant with seasonal endodormancy transition phases, suggesting that DNA methylation in these loci under investigation may not be linked to endodormancy progression in ‘Kosui’.