Search Results
You are looking at 1 - 10 of 14 items for
- Author or Editor: Fulya Baysal-Gurel x
Phytophthora root rot, caused by Phytophthora nicotianae Breda de Haan, is one of the destructive diseases of boxwood (Buxus sempervirens L.) and can affect all growth stages of field- and container-grown boxwood plants. Management is a problem and is only possible through an integrated approach. In this study, the efficacy of fungicides, biofungicides, host-plant defense inducers, and fertilizer were evaluated to manage Phytophthora root rot of boxwood. The objective of this experiment was to develop fungicide and biofungicide recommendations for Phytophthora root rot management in boxwood production. Field and greenhouse experiments were conducted in 2019 (Trial 1) and 2020 (Trial 2). The field experiment was arranged in a completely randomized design with four plots per treatment with five single ‘Green Velvet’ boxwood plants per plot. The greenhouse experiment was arranged in a completely randomized design with five single ‘Green Velvet’ container-grown boxwood plants per treatment. Plots/containers were inoculated with P. nicotianae grown on rice grains. Plant growth data such as height and average width were recorded at the beginning and end of the experiments. Total plant fresh weight and root fresh weight were recorded at the end of the experiments. Roots were assessed for root rot disease severity using a scale of 0% to 100% roots affected. Treatments used in both experiments were fungicides—ametoctradin + dimethomorph, fluzapyroxad, mefenoxam, oxathiapiprolin, pyraclostrobin, pyraclostrobin + boscalid; host-plant defense inducers—aluminum tris-drench, aluminum tris-foliar, potassium salts of phosphoric acid; biofungicides—Trichoderma harzianum Rifai strain T-22 + Trichoderma virens strain G-41, Bacillus amyloliquefaciens Priest; fertilizer—water-soluble nitrogen (nitrogen 5%) and soluble potash; and combination of water-soluble nitrogen, soluble potash, and T. harzianum Rifai strain T-22 + T. virens strain G-41. All treatments were drench applied except one of the aluminum tris, which was applied as foliar. The controls were nontreated, inoculated and nontreated, and noninoculated boxwood plants. In the greenhouse experiments, treatments that effectively reduced disease severity were pyraclostrobin, ametoctradin + dimethomorph, and oxathiapiprolin. In the field experiments, treatments such as pyraclostrobin, oxathiapiprolin, mefenoxam, fluzapyroxad, and combination of water-soluble nitrogen (nitrogen 5%), soluble potash, and T. harzianum Rifai strain T-22 + T. virens strain G-41 effectively reduced Phytophthora root rot severity. Oxathiapiprolin and pyraclostrobin are the chemical fungicides that were effective in both field and greenhouse experiments.
Phytophthora nicotianae and Rhizoctonia solani are the well-described soilborne pathogens of concern causing Phytophthora and Rhizoctonia root rot, respectively, of red maple plants (Acer rubrum L.), resulting in substantial economic losses to nursery growers. The management of root and crown rot disease of red maple is a big challenge. The objective of this study was to test the efficacy of several fungicide and biofungicide products to control Phytophthora and Rhizoctonia root rot on red maple plants in greenhouse conditions. Treatments, including fungicides and biofungicides, and nontreated and inoculated and nontreated and noninoculated as controls were arranged in a completely randomized design with six replications. Red maples planted in number 1 nursery containers were artificially inoculated with P. nicotianae or R. solani. Plant height, plant width, total fresh weight, and root fresh weight were measured and roots were assessed for root rot disease severity based on a scale of 0% to 100% root damaged. The pathogen recovery percentage of plant roots was determined by culturing ten randomly selected root pieces (≈1 cm long) cut from the root tips on Phytophthora selective medium (PARPH-V8) or Rhizoctonia semi-selective medium. All tested fungicides and biofungicides reduced Phytophthora and Rhizoctonia root rot on red maple plants compared with the nontreated and inoculated control. Likewise, pathogen recovery was lower for fungicide-treated and biofungicide-treated plants. Fungicides, such as mefenoxam, oxathiapiprolin, pyraclostrobin plus boscalid, and pyraclostrobin provided the most effective control of Phytophthora root rot. Pyraclostrobin plus boscalid and pyraclostrobin followed by biofungicides Bacillus amyloliquefaciens strain F727 and Trichoderma harzianum Rifai strain T-22 plus T. virens strain G-41 were most effective for suppressing Rhizoctonia root rot. There were no differences in plant height, plant width, plant fresh weight, and root fresh weight among the treatments. These findings will help nursery producers make decisions while formulating soilborne disease management strategies for red maple production.
Ninebark (Physocarpus opulifolius) is a popular ornamental shrub and considered a hardy and tough plant that can thrive in different environmental conditions and resist diseases. However, powdery mildew, caused by Podosphaera physocarpi, can severelyaffect ninebark, deteriorating the ornamental value and making them unmarketable. Only a few studies have been done in managing powdery mildew of ninebark. The current study focuses on evaluating and identifying effective products (sanitizers, biorational products, and fungicides) for the management of powdery mildew disease of ninebark. A total of 12 treatments, including nontreated control, were studied. The experiment was arranged in randomized complete block design with four-single ‘Mindia Coppertina®’ ninebark plant per treatment and repeated twice. Powdery mildew disease severity, growth parameters, and phytotoxicity were assessed in the study. All treatments significantly reduced the powdery mildew disease severity and disease progress [area under disease progress curve (AUDPC)] compared with the nontreated control. The treatments, such as azoxystrobin + benzovindiflupyr at 0.17 and 0.23 g·L–1 total active ingredients (a.i.) applied, chlorothalonil + propiconazole at 1.12 mL·L–1 total a.i. applied, azoxystrobin + tebuconazole at 0.11 and 0.16 g·L–1 total a.i. applied, and giant knotweed extract [Reynoutria sachalinensis (0.5 mL·L–1 total a.i. applied)] were the most effective treatments in reducing disease severity and disease progress in both trials. The treatments had no significant effects on the plant growth parameters such as height and width. In Expt. 2, azoxystrobin + benzovindiflupyr and hydrogen peroxide + peroxyacetic acid treated plants showed the low level of phytotoxic symptoms. The phytotoxicity of these two treatments in Expt. 2 could be related to higher environmental temperature during the experimental period.
The cut flower growers of the eastern and southern United States are threatened with postharvest meltdown of zinnia (Zinnia elegans), which reduces yield and income as well as limiting opportunities for production expansion. Disease symptoms such as bending of the stem just below the flower were visually apparent on zinnia cut flowers. The objective of this study was to identify the causal agent related to zinnia meltdown. A total of 20 symptomatic zinnia cut flower stems were collected from Tennessee. Several Fusarium-like colonies with micro and macroconidia were isolated from the base and bend area of stems on potato dextrose agar (PDA) and Fusarium-selective media. Morphological characterization, polymerase chain reaction, and sequencing of three representative isolates, FBG2020_198, FBG2020_199, and FBG2020_201, were conducted to confirm pathogen identification. The sequence identity of the isolates was >99% identical to Fusarium commune, and a combined phylogenetic tree grouped the isolates with the clade of F. commune from different host and geographical locations. To accomplish Koch’s postulates, a pathogenicity test was performed on ‘Benary’s Giant Golden Yellow’, ‘Benary’s Giant Lime’, and ‘Benary’s Giant Pink’ zinnia plants at vegetative (2 weeks after transplantation) or flower bud stage (1 month after transplantation) by drench, stem injection, and foliar spray of conidial suspension (1 × 105 conidia/mL). Similar symptoms of meltdown (floral axis bending just below the flower) were observed on inoculated zinnia cultivars 2 days after harvesting. Fusarium commune was re-isolated from the infected flower stems of all three cultivars but not from the noninoculated zinnia flower stems. Zinnia stem colonization by F. commune was statistically similar in all three tested cultivars regardless of plant growth stage and method of inoculation. This study confirms F. commune as being the causal agent of postharvest zinnia flower meltdown issue in Tennessee. In the future, possible sources of pathogen will be screened, and disease management recommendations will be developed.
Flowering dogwoods (Cornus florida L.) are drought-sensitive ornamental trees. Two trials (in 2021 and 2022) were conducted to evaluate the physiological changes induced as a result of drought conditions. In an outdoor setting, trees were organized in a randomized complete block design. Three different irrigation treatments were applied at 125%, 25%, and 10% (control, moderate, and severe drought, respectively) of their daily water usage (evapotranspiration). The two physiological parameters normalized difference vegetation index (NDVI) and leaf moisture potential were collected every week for 1 month. Plant growth data (height and width) were collected at the beginning and the end of the study. Normalized difference vegetation index data collected with a handheld NDVI meter and a Sentera NDVI sensor mounted on an unmanned aerial vehicle (UAV) were correlated for ground truthing. In 2021, control plants had a greater plant width increase and shoot biomass, whereas no significant differences in growth were observed among the treatments in 2022. In both trials, the NDVI was the greatest for control plants compared with the other treatments on days 7, 14, 21, and 27. In both studies, no differences were observed for leaf moisture potential on day 7, but was greatest for controls on days 14, 21, and 27. The correlation between the handheld NDVI and the UAV NDVI was found to be strong and positive, ranging from 0.84 to 0.93 (trial 1: P ≤ 0.0001, P ≤ 0.0001, P = 0.0002, and P ≤ 0.0001; trial 2: P = 0.0002, P ≤ 0.0001, P ≤ 0.0001, and P ≤ 0.0001 for weeks 1–4, respectively). This information will be applicable to understanding the physiology of the crop and the inclusion of emerging technology in crop production and monitoring.
Nursery growers rely on fungicides to manage root rot disease of boxwood caused by Phytophthora nicotianae and P. cinnamomi. Repeated use of the same fungicide may lead to the fungicide resistance. In this study, fungicides pyraclostrobin + cyazofamid (Empress + Segway), ametoctradin + dimethomorph (Orvego), ametoctradin + dimethomorph alternated with pyraclostrobin (Orvego alt Empress), ametoctradin + dimethomorph alternated with fluxapyroxad + pyraclostrobin (Orvego alt Orkestra), and oxathiapiprolin (Segovis) were evaluated for their efficacy in managing Phytophthora root rot under greenhouse conditions in Tennessee. One-year-old container-grown boxwood ‘Green Velvet’ plants were inoculated with P. nicotianae or P. cinnamomi. The first applications of fungicide treatments were made preventatively as a drench 48 h before pathogen inoculation. Following inoculation, four applications of fungicide treatments were performed on a 14-day intervals. Initial and final plant height and width were measured. Total plant fresh weight and root fresh weight were measured at the end of the trials, and plants were evaluated for root rot severity (0% to 100% roots affected) and pathogen recovery. All fungicides significantly reduced root rot severity and pathogen recovery of P. nicotianae and P. cinnamomi. Ametoctradin + dimethomorph alternated with pyraclostrobin (Orvego alt Empress) provided similar protection against P. cinnamomi to that of a single application of ametoctradin + dimethomorph (Orvego) or oxathiapiprolin (Segovis). For P. nicotianae, ametoctradin + dimethomorph alternated with pyraclostrobin + fluzapyroxad (Orvego alt Orkestra) was found to be as effective as a single application of either ametoctradin + dimethomorph (Orvego) or oxathiapiprolin (Segovis) in one of the two trials. Effects of fungicides on plant growth such as height, width, total, and root fresh weight were not significant. These findings will be useful to nursery growers in selecting the right fungicide program for the management of root rot disease of boxwood caused by P. nicotianae and P. cinnamomi.
Boxwood is one of the most popular evergreen shrubs in the United States, the production of which is currently challenged by boxwood blight, an emerging threat that has spread across 30 states. A thorough understanding of boxwood production, plant health, management practices and economic impact could aid in answering the needs of the nursery industry in managing this disease. An online modified Delphi survey was conducted to identify grower perceptions on processes, programs, and practices to limit or prevent the entry and spread of boxwood blight disease. The expert panel consisted of 29 nursery producers who represented a significant portion of boxwood production nationally. The panel members rated boxwood blight as the third most problematic disease with a potential to be number one in the future. Boxwood transplants were perceived as the main source of boxwood blight outbreak, followed by cutting tools, nursery equipment, containers, plant debris, irrigation water, worker hygiene, and other crops. According to the panel responses, cultural control methods, inspection, and quarantine of incoming plant material, scouting, and sanitization were the most important practices that can limit or prevent plant diseases during boxwood production. The panel members did not agree that the composted manure could influence the spread of plant disease in boxwood production, although this has been verified by the findings of various previous research experiments. Panel members were very familiar with scouting and employee training, best management practices, and the boxwood blight cleanliness program. This study documents the key components, practices, and procedures in boxwood production that could influence the spread of boxwood blight in nurseries and could be further verified by sampling and laboratory assays to specify the critical control points in the production process.
Botrytis cinerea is one of the problematic and notorious postharvest pathogens of bigleaf hydrangea (Hydrangea macrophylla) cut flowers. It causes flower blight, leaf blight, and stem rot, reducing the ornamental value (such as longevity, color, and texture) of flowers, ultimately making them unsalable. The objective of this study was to identify effective conventional fungicides and biorational products for botrytis blight management on bigleaf hydrangea cut flowers that can be easily and readily adopted by growers of ornamentals. Preventive preharvest whole-plant spray and postharvest dip treatment applications were used in this study. For the whole-plant spray applications, bigleaf hydrangea plants were sprayed with treatment solution 3 days before harvesting flowers. For the dip applications, cut flowers were dipped in treatment solutions after harvest. For both application types, flowers were inoculated with B. cinerea spores once treatment solutions dried. Flowers were stored in cold storage for 3 days and then displayed in conditions similar to retail stores. Botrytis blight disease severity, marketability of flower (postharvest vase life), phytotoxicity, and application residue were assessed in the study. Treatments showed variable efficacy in managing postharvest B. cinerea infection in bigleaf hydrangea cut flowers. Preventive preharvest whole-plant spray and postharvest dip applications of isofetamid and fluxapyroxad + pyraclostrobin significantly reduced the postharvest botrytis blight disease severity and area under disease progress curve (AUDPC) compared with the positive control (nontreated, inoculated with B. cinerea). When applied as a postharvest dip, the fungicide fludioxonil and biofungicide Aureobasidium pullulans strains DSM 14940 and DSM 14941 effectively lowered the disease severity and disease progress (AUDPC). These effective treatments also maintained a significantly longer postharvest vase life of bigleaf hydrangea cut flowers compared with the nontreated, inoculated control. The longer vase life may be attributed to lowered botrytis blight disease severity and the resultant proper physiological functioning of flowers.
Witchhazel (Hamamelis sp.) cultivars are now available in an array of forms and flower colors, including several native, pollinator-friendly cultivars. However, little is known about response of witchhazel cultivars to powdery mildew (Podosphaera biuncinata) or the growth and flowering characteristics of witchhazel cultivars in a nursery field production setting. To provide growth, flowering, and disease incidence data to nursery growers, a cultivar trial including 23 cultivars of witchhazel representing five species was planted Apr. 2016 in McMinnville, TN. Plant growth, flowering density, length of bloom, and foliar disease incidence were evaluated over three growing seasons between May 2016 and Oct. 2018. ‘Zuccariniana’ japanese witchhazel (H. japonica) and ‘Sunglow’ common witchhazel (H. virginiana) showed the greatest height increase during the trial, and ‘Sunglow’ also added the most width during the trial. Cultivars with negative height or width growth included Sweet Sunshine chinese witchhazel (H. mollis) and hybrid witchhazels (H. ×intermedia) Aphrodite, Twilight, and Barmstedt Gold. Ten of the 23 cultivars experienced winter injury in the form of stem necrosis. Root crown sprouts were observed for all cultivars at least once during the trial. ‘Wisely Supreme’ chinese witchhazel had the longest bloom period, followed by ‘Westerstede’ and ‘Twilight’ hybrid witchhazels, whereas ‘Quasimodo’ vernal witchhazel (H. vernalis) had the greatest density of flowers. The hybrid witchhazel cultivars Aphrodite, Nina, and Arnold Promise and the common witchhazel cultivars Green Thumb and Sunglow were resistant to powdery mildew under trial conditions in all 3 years. ‘Twilight’ and ‘Barmstedt Gold’ hybrid witchhazel, ‘Little Suzie’ common witchhazel, ‘Wisley Supreme’ chinese witchhazel, and ‘Shibamichi Red’ japanese witchhazel were moderately resistant to powdery mildew.
Crapemyrtle (Lagerstroemia sp.) is a top-selling deciduous flowering tree in the United States, and its salability is often compromised by cercospora (Cercospora lythracearum Heald & F. A. Wolf) leaf spot. To compare cercospora leaf spot resistance, 32 crapemyrtle cultivars belonging to Lagerstroemia indica, Lagerstroemia fauriei, L. indica × L. fauriei, and L. indica × L. fauriei × Lagerstroemia limii and 12 cultivars or unnamed selections belonging to L. indica, L. indica × L. fauriei, L indica × L. fauriei × L. limii, L. limii, and Lagerstroemia subcostata were planted in field plots in 2004 and 2011, respectively. The experiment was a completely randomized block design with three and four replications in the 2004 and 2011 plantings, respectively. Plants were evaluated for cercospora leaf spot disease severity and defoliation using a scale of 0% to 100% foliage affected from August to October of 2015, 2016, and 2017. Area under the disease progress curve (AUDPC) was calculated for the evaluation period of each year. L. fauriei cultivars Fantasy, Kiowa, Townhouse, and Woodlander’s Chocolate Soldier and L. indica × L. fauriei Apalachee from the 2004 planting, and the L. subcostata and L. limii selections from the 2011 planting had lowest cercospora leaf spot disease severity ratings, AUDPC, and defoliation. L. indica × L. fauriei cultivars Choctaw, Miami, Natchez, Osage, Sarah’s Favorite, Tonto, Tuscarora, and Tuskegee, and L. indica × L. fauriei × L. limii Arapaho were moderately resistant to cercospora leaf spot, whereas cultivars belonging to L. indica and L. indica × L. fauriei × L. limii Cheyenne were highly susceptible to cercospora leaf spot. Results from this research may aid breeders, nursery producers, and landscapers in selecting crapemyrtle species and cultivars with cercospora leaf spot resistance.