Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Fritz Lenz x
Clear All Modify Search

Although apple (Malus domestica Borkh.) system yield differences are generally related to whole-canopy light interception, this study tested the hypothesis that these orchard yields are related primarily to total light intercepted by the spur canopy. Seasonal leaf area development of different shoot types, exposed bourse shoot leaf net photosynthesis, fruit growth, whole canopy light interception (by image analysis of fisheye photographs) and relative light interception by different shoot types (by a laser assisted canopy scanning device) were estimated within four 14-year-old `Empire' apple production systems (slender spindle/M.9, central leader/M.7, central leader/M.9/MM.111 and Y-trellis/M.26). The final LAI values were CL/M.7 = 1.8, CL/9/111 = 2.3, SS/M.9 = 2.6 and Y/M.26 = 3.6. Exposed leaf net photosynthesis showed few differences and was not dependent upon the production system. Yields of the pyramidal shaped tree forms were 40 to 42 t·ha-1 while Y-trellis produced 59 t·ha-1, with similar fruit sizes. Again, yields were primarily related to the percentage of light intercepted by the whole canopy, 48% to 53% for conic forms versus 62% for the Y-trellis system. Laser analyses showed that the Y-trellis system intercepted about 20% to 30% more light with the spur canopy than the conic tree forms, supporting the hypothesis. Yields were better correlated with spur canopy LAI and spur canopy light interception than with extension shoot canopy LAI and light interception.

Free access