Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Frank N. Martin x
  • Refine by Access: All x
Clear All Modify Search
Free access

Steven A. Fennimore, Frank N. Martin, Thomas C. Miller, Janet C. Broome, Nathan Dorn, and Ian Greene

Steam-disinfestation of soil as an alternative to chemical fumigation was investigated in both research and commercial strawberry (Fragaria ×ananassa Duch.) production field trials at four sites over 2 years (2011–13) using new prototype commercial application equipment: a tractor-drawn device that physically mixed the steam with the soil as it passed through the shaped planting beds. Results included significant suppression of weeds and soilborne pathogens equal to commercial chemigation of chloropicrin with 1,3-dichloropropene (Pic-Clor 60). Also, the combination of steam treatment with soil amendments of mustard seed meal (MSM; two of four trials included treatment), a fertilizer and source of additional organic matter, showed very favorable strawberry production in terms of yield as well as weed and pathogen control. Soil nitrogen-containing ions were monitored at two of the sites and the MSM treatment significantly elevated available soil nitrates by the time of transplanting as did the steam treatment alone, but only significantly at one of the sites.

Free access

Zahangir Kabir, Steven A. Fennimore, John M. Duniway, Frank N. Martin, Gregory T. Browne, Christopher Q. Winterbottom, Husein A. Ajwa, Becky B. Westerdahl, Rachael E. Goodhue, and Milton J. Haar

For years, strawberry (Fragaria ×ananassa L.) runner plant nurseries have relied on methyl bromide (MB) fumigation of soil to produce healthy transplants. Methyl bromide, however, has been phased out due to its environmental risks. The potential for alternative fumigants to replace MB was evaluated at low and high elevation strawberry nurseries in California. The alternative fumigant iodomethane plus chloropicrin (IMPic) and a nonfumigated control (NF) were compared to methyl bromide plus chloropicrin (MBPic) at a low elevation nursery (LEN) and at a high elevation nursery (HEN) near Susanville, Calif. At a HEN near Macdoel, Calif., MBPic was compared to alternative fumigants IMPic, 1,3-dichloropropene plus chloropicrin mixture (Telone C35) followed by dazomet, chloropicrin (Pic) followed by dazomet and NF. Plants produced at the LEN were transplanted at the Macdoel HEN to measure the effects of soil fumigant history on plant health and runner plant production. Plants produced at both high elevation nurseries were evaluated for fruit yield and quality at two commercial fruit production sites in soils previously fumigated with MBPic or Pic. Runner plant production at the nurseries was similar in plots fumigated with either MBPic or alternative fumigants. All fumigation treatments had higher runner plant production than plants produced for two production cycles on NF soils. Generally, fruit yields from nursery plants produced on soils fumigated with IMPic, Pic followed by dazomet, or Telone C35 followed by dazomet, were similar to fruit yields from plants produced on MBPic fumigated soils. Overall, our results indicate that preplant soil treatments with IMPic, Pic followed by dazomet, and Telone C35 followed by dazomet, are potential alternatives to MBPic fumigation for strawberry runner plant nurseries. Fruit yields by plants in MBPic and Pic fumigated soils were comparable; however, they were more variable in Pic fumigated soils. Chemical names used: 1,3-dichloropropene (1,3-D), methyl bromide, methyl iodide (iodomethane), trichloronitromethane (chloropicrin), tetrahydro-3, 5-dimethyl-2 H-1,3,5-thiadiazine-2-thione (dazomet).