Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Frank A. Mrema x
Clear All Modify Search
Restricted access

Margaret T. Mmbaga, Lucas A. Mackasmiel and Frank A. Mrema

Macrophomina phaseolina was isolated from the crown region and roots of mature flowering dogwood (Cornus florida L.) trees in the landscape and nursery plantings. Although this pathogen has been reported in Cornus species, its occurrence and impact on C. florida has not been reported. Pathogenicity tests were conducted on dogwood seedlings, and all inoculated seedlings developed root necrotic lesions and no small lateral roots, whereas the non-inoculated control seedlings remained disease-free and developed numerous small roots. Seedlings inoculated with M. phaseolina exhibited numerous microsclerotia, but non-inoculated seedlings did not. In greenhouse experiments, plants inoculated on the stems near the soil line developed brown canker-like lesions and swellings around the inoculated area. These were not observed on non-inoculated plants.

Restricted access

Margaret T. Mmbaga, Lucas M. Mackasmiel and Frank A. Mrema

Six biological control agents (BCAs) (two bacteria, two fungi, and two yeasts) that were previously shown to be effective against powdery mildew (Erysiphe pulchra) were tested for efficacy against Macrophomina phaseolina root rot on flowering dogwood (Cornus florida) in the greenhouse. Two of the bacterial isolates, Stenotrophomonas sp. (B17A) and Serratia sp. (B17B), were effective in controlling both macrophomina root rot and powdery mildew, similar to fungicide control thiophanate methyl, when roots were drenched with the six BCAs individually. In addition, the two bacterial BCAs improved plant growth with respect to stem diameter, stem length, dry weight, and green foliage compared with fungicide-treated plants or nontreated controls grown in sterile soil. These results confirm previous results in which B17A and B17B suppressed powdery mildew and also promoted plant growth in flowering dogwood. Although macrophomina root rot has been previously reported as a potential problem in flowering dogwood, especially in field conditions, simultaneous infection with macrophomina root rot and powdery mildew has not been previously reported. This study confirmed that M. phaseolina infection was characterized by stubby roots and black root lesions, and plants infected with both powdery mildew and macrophomina root rot had smaller root mass compared with fungicide-treated plants. Neither of the two pathogens killed their host plants, but compounded infections significantly reduced the plant root system and plant growth. The efficacy of the two bacterial isolates in controlling both powdery mildew and macrophomina root rot suggests their potential utilization in controlling both diseases in dogwood nursery production and in other plants that are hosts to both powdery mildew and macrophomina root rot. Plant growth promoted by the two BCAs may be attributed to powdery mildew and macrophomina root rot control, but comparisons between fungicide-treated plants and control plants not inoculated with BCAs or root rot pathogen suggested that the two BCAs may play a role as bio-stimulants in growth enhancement. These results also suggest that the two biocontrol agents are not phytotoxic to dogwood.