Search Results
More axillary buds 1 (MAX1), initially identified in arabidopsis (Arabidopsis thaliana), is a key regulatory gene in strigolactone synthesis. CmMAX1, an ortholog of MAX1 was cloned from chrysanthemum (Chrysanthemum morifolium cv. Jinba). It had an open reading frame of 1611 bp and encoded 536 amino acid of P450 protein, with a conserved heme-binding motif of PFG × GPR × C × G, as well as PERF and KExxR motifs. The predicted amino acid sequence of CmMAX1 was most closely related to the MAX1 ortholog identified in lotus (Nelumbo nucifera), NnMAX1, with 55.33% amino acid sequence similarity. Expression analysis revealed there was no significant difference of CmMAX1 expression among various tissues. Phosphorus (P) deficiency significantly improved the expression levels of CmMAX1. Strigolactone, auxin, and cytokinin negatively regulated the expression of CmMAX1. Overexpression of CmMAX1 reduced the branch numbers of arabidopsis max1-1. These results suggest that CmMAX1 may be a candidate gene for reducing the shoot branching of chrysanthemum.
Walnut, a woody plant, is regarded as having difficulty rooting when propagated by vegetative methods, such as cutting and layering. A layering experiment was conducted in 2018 and 2022. In 2018, some Juglans species, including J. regia L. seedling (JR), J. regia cv. Liaoning 1 (JR LN1), J. hopeinesis Hu seedling (JH), J. mandshurica Maxim seedling (JM), and J. nigra L. seedling (JN), were the mother plants. The specific research hypotheses were that own-rooted walnut propagule could be obtained through layering. the rooting capacity of different Juglans species would be different, and the rooting ability of JN would be the highest among the samplings. The results indicated that all of these species in the experiment could be rooted by etiolation and indole-3-butyric acid (IBA) treatment and that root occurrence was found 6 to 7 weeks after IBA treatment. The layers (shoots from the mother plant) on the seedlings of JR, JH, and JM obtained rooting percentages (RP) of 75.55%, 84.45%, and 86.67%, respectively, and root numbers (RNs) of 21.8, 42.8, and 38.8, respectively, after 20 days of etiolation and 1% IBA treatment. JR LN1 had difficulty rooting in equal conditions and had a RP of 31.11%. In 2022, JR LN1 was the only mother plant and the IBA concentration was increased to obtain satisfactory RP and RN. With the 4% and 8% IBA treatments, RPs of 88.9% and 93.3% and RNs of 40.3 and 27.7, respectively, were achieved. During the experiment, the RP, RN, root length (RL), and root diameter (RD), as well as the layer height (LH) and layer diameter (LD), were investigated and evaluated. Layers with low vigor were more likely to root, as shown by a nonparametric test conducted for the height and diameter of the layers of the rooting and nonrooting groups. A significantly negative correlation (r = −0.548) was observed between RN and LH. Moreover, the quality of the best results of JR LN1 layering propagule and that with ‘liaoning 1’ 1-year-old seedling were compared. Our results provide more support for the possibility of vegetative propagation of walnut by layering and more information regarding the clonal cultivation of walnut trees and the own-rooted seedling establishment of walnut cultivars.
GA20-oxidase (GA20-ox) is a key enzyme involved in the biosynthesis of gibberellic acid (GA). To investigate its role in plant growth and development, we suppressed MdGA20-ox gene expression in apple (Malus domestica cv. Hanfu) plants by RNA interference (RNAi). After 20 weeks of growth in the greenhouse, significant phenotype differences were observed between transgenic lines and the nontransgenic control. Suppression of MdGA20-ox gene expression resulted in lower plant height, shorter internode length, and higher number of nodes compared with the nontransgenic control. The expression of MdGA20-ox in transgenic plants was significantly suppressed, and the active GA content in transgenic lines was lower than that in the nontransgenic control. These results demonstrated that the MdGA20-ox gene plays an important role in vegetative growth, and therefore it is possible to develop dwarfed or compact scion apple cultivars by MdGA20-ox gene silencing.
Large-fruit bud mutations are important factors in fruit tree breeding. However, little is known about the differences between varieties and bud mutations. The ploidy identification of Korla fragrant pear (Pyrus sinkiangensis Yu) and its large bud mutation Zaomeixiang pear showed that the large-fruit characteristic was not caused by chromosome doubling. By counting mesocarp cells at different stages, we found that the number of cells increased continuously after pollination, and the difference was the greatest at 28 days after full bloom (DAFB), and was about 9.4 × 106. After 28 days, the difference in cell volume became bigger and bigger, so both the cell volume and cell number caused the difference in fruit size between Korla fragrant pear and Zaomeixiang pear. To obtain more insights into the differences in fruit size driven by cell division, we analyzed the endogenous hormones [indole ascetic acid (IAA), zeatin riboside (ZR), gibberellic acid (GA), and abscisic acid (ABA)], and the main sugars (glucose, fructose, sucrose, and sorbitol). The ZR content of Zaomeixiang pear was always greater than that of Korla fragrant pear at all stages. The ABA content was the opposite except for at 7 DAFB during cell division; the greatest difference was 30.87 ng/g, which appeared at 28 DAFB. ABA and ZR correlated negatively with cell number. After 7 DAFB, the ratio of IAA/ABA, ZR/ABA, and GA/ABA in Zaomeixiang pear was always greater than that for Korla fragrant pear at 28 DAFB. The difference in glucose content at 21 DAFB was the greatest, at 4.80 ng/g. Large amounts of sorbitol accumulated during whole-cell division. Glucose and sorbitol correlated positively with cell numbers. In summary, the data suggest that the different contents of glucose, sorbitol, ZR, and ABA, and the ratio of endogenous hormones might be related to cell division in Korla fragrant pear and Zaomeixiang pear. The result provides a theoretical basis for the large-size fruit’s high-quality production and genetic breeding of Korla fragrant pear and its bud mutation.
‘Korla’ fragrant pear (Pyrus sinkiangensis T.T. Yu) variety has shown severe coarse skin in recent years. The intrinsic quality of its coarse fruit shows an increase in the number of stone cells and poor taste. In this study, stone cells and the cell wall of coarse pear (CP) and normal pear (NP) during various development stages were compared using paraffin-sectioning and transmission electron microscopy (TEM), and the relationships between lignin-related genes and stone cell formation and cell wall thickening were also analyzed. Our results show that giant stone cells are formed and distributed in the core of pear, whereas many of these crack 60 days after flowering (DAF). The period of stone cell fragmentation occurs later in CP fruits than in NP fruits. Parenchyma cell wall development in CP and NP fruits varies from 120 DAF to maturity. The parenchyma cell wall of CP fruits thickens, whereas that of NP fruits is thinner during the same period. The expression pattern of five genes (Pp4CL1-l, PpHCT-l, Pp4CL2-l, PpPOD4, and PpPOD25) coincides with changes in stone cell content in the pulp. Correlation analysis demonstrates a significant correlation between stone cell content and the expression level of the five genes (ρ < 0.05). In addition, the expression of those five genes and PpCCR1 genes in CP fruits significantly increases during maturation and is highly correlated with the thickness of the parenchyma cell wall. The aim of this work is to provide insights into the mechanism of stone cell and parenchyma cell wall development in pear fruits and identify important candidate genes to regulate the quality of fruit texture using bioengineering methods.
Cold stress is one of the most important environmental factors affecting crop growth and agricultural production. Induced changes of gene expression and metabolism are critical for plants responding and acclimating to cold stress. Banana (Musa sp.) is one of the most important food crops in the tropical and subtropical countries of the world. Banana, which originated from tropical regions, is sensitive to cold, which can result in serious losses in commercial banana production. To investigate the response of the banana to cold stress conditions, changes in protein expression were analyzed using a comparative proteomics approach. ‘Brazil’ banana (Musa acuminata AAA group) is a common banana cultivar in southern China. ‘Brazil’ banana plantlets were exposed to 5 °C for 24 hours and then total crude protein was extracted from treatment and control leaves by phenol extraction, separated with two-dimensional gel electrophoresis, and subsequently identified by mass spectrometry (MS). Out of the more than 400 protein spots reproducibly detected, only 41 protein spots exhibited a change in intensity by at least 2-fold, with 26 proteins increasing and 15 proteins decreasing expression. Of these, 28 differentially expressed proteins were identified by MS. The identified proteins, including well-known and novel cold-responsive proteins, are involved in several cellular processes, including antioxidation and antipathogen, photosynthesis, chaperones, protein synthesis, signal transduction, energy metabolism, and other cellular functions. Proteins related to antioxidation, pathogen resistance, molecular chaperones, and energy metabolism were up-regulated, and proteins related to ethylene synthesis, protein synthesis, and epigenetic modification were down-regulated in response to cold temperature treatment. The banana plantlets incubated at cold temperatures demonstrated major changes in increased reactive oxygen species (ROS) scavenging, defense against diseases, and energy supply. Increased antioxidation capability in banana was also discovered in plantain, which has greater cold tolerance than banana in response to cold stress conditions. Therefore, we hypothesized that an increased antioxidation ability could be a common characteristic of banana and plantain in response to cold stress conditions. These findings may provide a better understanding of the physiological processes of banana in response to cold stress conditions.
‘Hanhong’ (Pyrus ussuriensis Maxim × P. bretschneideri Rehd.) is a new high-quality Asian pear with excellent firmness and crispness and a long shelf life. Fruit of ‘Hanhong’ are very attractive and the tree is very winter-hardy. The fruit and leaves are resistant to pear scab (Venturia pirina Aderh) and black spot (Alternaria kikuchiana Tannka) disease.