Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Feng Peng x
  • All content x
Clear All Modify Search
Free access

Ya-Long Qin, Xiao-Chun Shu, Wei-Bing Zhuang, Feng Peng, and Zhong Wang

Callus induction and plant regeneration play a key role in transgenic technology. Although much progress has been made with respect to eggplant, this type of research is insufficiently developed in Solanum torvum (a wild relative of eggplant), which contains a large number of resistance genes. Here, a high-efficiency regeneration system of S. torvum was established. Stem segments and leaves were cultured on Murashige and Skoog (MS) medium supplemented with 0.5–3.0 mg·L−1 6-benzyladenine (6-BA) and 0.1–0.6 mg·L−1 α-naphthaleneacetic acid (NAA). The highest callus induction ratio (100%) was produced on MS + 1.0 mg·L−1 6-BA + 0.5 mg·L−1 NAA. The combination of 0.5 mg·L−1 BA and 1.0 mg·L−1 2,4-dichlorophenoxyacetic acid in MS medium (double microelement) was the best for plant regeneration. Well-developed shoots rooted on half-strength MS medium supplemented with 0.1 mg·L−1 indole-3-acetic acid (IAA). These results will be helpful for functional verification of resistance genes from S. torvum and may be useful to those working in the field of eggplant breeding.

Free access

Ren-jun Feng, Li-li Zhang, Jing-yi Wang, Jin-mei Luo, Ming Peng, Jun-feng Qi, Yin-don Zhang, and Li-fang Lu

Cold stress is one of the most important environmental factors affecting crop growth and agricultural production. Induced changes of gene expression and metabolism are critical for plants responding and acclimating to cold stress. Banana (Musa sp.) is one of the most important food crops in the tropical and subtropical countries of the world. Banana, which originated from tropical regions, is sensitive to cold, which can result in serious losses in commercial banana production. To investigate the response of the banana to cold stress conditions, changes in protein expression were analyzed using a comparative proteomics approach. ‘Brazil’ banana (Musa acuminata AAA group) is a common banana cultivar in southern China. ‘Brazil’ banana plantlets were exposed to 5 °C for 24 hours and then total crude protein was extracted from treatment and control leaves by phenol extraction, separated with two-dimensional gel electrophoresis, and subsequently identified by mass spectrometry (MS). Out of the more than 400 protein spots reproducibly detected, only 41 protein spots exhibited a change in intensity by at least 2-fold, with 26 proteins increasing and 15 proteins decreasing expression. Of these, 28 differentially expressed proteins were identified by MS. The identified proteins, including well-known and novel cold-responsive proteins, are involved in several cellular processes, including antioxidation and antipathogen, photosynthesis, chaperones, protein synthesis, signal transduction, energy metabolism, and other cellular functions. Proteins related to antioxidation, pathogen resistance, molecular chaperones, and energy metabolism were up-regulated, and proteins related to ethylene synthesis, protein synthesis, and epigenetic modification were down-regulated in response to cold temperature treatment. The banana plantlets incubated at cold temperatures demonstrated major changes in increased reactive oxygen species (ROS) scavenging, defense against diseases, and energy supply. Increased antioxidation capability in banana was also discovered in plantain, which has greater cold tolerance than banana in response to cold stress conditions. Therefore, we hypothesized that an increased antioxidation ability could be a common characteristic of banana and plantain in response to cold stress conditions. These findings may provide a better understanding of the physiological processes of banana in response to cold stress conditions.

Free access

Jian-rong Feng, Wan-peng Xi, Wen-hui Li, Hai-nan Liu, Xiao-fang Liu, and Xiao-yan Lu

The characterization of aroma of the 14 main apricot (Prunus armeniaca L.) cultivars in Xinjiang was evaluated using high-performance solid-phase microextraction (HP-SPME) with gas chromatography-mass spectroscopy (GC-MS). A total of 208 volatiles that include 80 esters, 25 aldehydes, 15 terpenes, 21 ketones, 39 alcohols, 27 olefins, and 1 acid were identified from these cultivars. The compounds propyl acetate, 3-methyl-1-butanol acetate, (Z)-3-hexen-1-ol acetate, d-limonene, β-linalool, hexanal, hexyl acetate, butyl acetate, β-myrcene, ethyl butanoate, and β-cis-ocimene were the major compounds responsible for aroma in these cultivars. GC-MS results showed that Kuchexiaobaixing, Guoxiyuluke, and seven other cultivars were characterized by a high level of esters and were considered to be fruity apricot aroma. ‘Luotuohuang’ and ‘Heiyexing’ accumulate high levels of terpenes and exhibited an outstanding floral aroma. Higher levels of alcohols and aldehydes were observed in ‘Danxing’, ‘Sumaiti’, and ‘Kumaiti’. The latter are considered green aroma cultivars. These three types of cultivars with different aroma characteristics can be significantly differentiated by using the principal component analysis (PCA) method. The contributions of volatiles to the apricot aroma were assessed by using the partial least squares regression (PLSR) model. Esters, terpenes, and C6 components were shown to be responsible for the fruity, floral, and green character of fresh apricots, respectively.

Free access

Bin Cai, Cheng-Hui Li, Ai-Sheng Xiong, Ri-He Peng, Jun Zhou, Feng Gao, Zhen Zhang, and Quan-Hong Yao

The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.

Free access

Yun-Peng Zhong, Zhi Li, Dan-Feng Bai, Xiu-Juan Qi, Jin-Yong Chen, Cui-Guo Wei, Miao-Miao Lin, and Jin-Bao Fang

To select resistant germplasm resources and understand the growth and physiological responses of kiwifruit (Actinidia sp.) to drought stress, five species, Actinidia macrosperma (Acma), Actinidia longicarpa (Aclo), Actinidia deliciosa (Acde), Actinidia hemsleyana (Ache), and Actinidia valvata (Acva), were assessed under tissue culture conditions. Rootless seedlings of five species were cultured in a medium containing polyethylene glycol [PEG (formula weight 8000)] to induce drought stress (0%, 5%, 10%, 15%, and 20%). After a 30-day culture, three growth indices [fresh weight (FW), plant height (PLH), and leaf number (LN)] and six physiological indices were determined, and the drought damage index (DDI) was determined. The DDIs of five species increased, and three growth indices decreased with increasing PEG concentrations. The following changes were observed under 20% PEG treatment conditions: superoxide dismutase (SOD) activities increased significantly in Acma, Aclo, and Ache specimens; peroxidase (POX) activities remained stable in Acde, Ache, and Acva specimens; and catalase (CAT) activities increased sharply in Acma and Acva. Furthermore, the results indicated that soluble sugar (SS) content increased slightly in Acma, Aclo, Acde, and Ache but it decreased in Acva specimens. Proline (PRO) content increased significantly in Acma and Acva, and malondialdehyde (MDA) contents tended to increase under drought stress in all five species. Principal component analysis (PCA) results indicated that the order of drought tolerance in the five genotypes examined in this study under tissue culture conditions was as follows: Acma > Acva > Acde > Aclo > Ache. Therefore, we concluded that Acma and Acva are more resilient germplasm resources that represent promising kiwifruit-breeding materials. Furthermore, tolerance to drought stress in these species should be further investigated under orchard conditions.