Search Results

You are looking at 1 - 10 of 34 items for

  • Author or Editor: Fan Zhang x
Clear All Modify Search

In this study, five cultivars of cut chrysanthemum Chrysanthemum ×morifolium Ramat., ‘Jinba’, ‘Yuuka’, ‘Fenguiren’, ‘Xueshen’, and ‘Huangjin’ were used to explore the functions of 5-azacytidine (5-azaC) on chrysanthemum growth and flower development. The results showed that 5-azaC had different effects on the growth of the five cultivars during in vitro culture. The final statistics showed that low concentrations promoted plant growth, whereas high concentrations inhibited growth; however, each cultivar had different growth curves, demonstrating that 5-azaC had no consistent inhibitory actions on growth. On the basis of the squaring time and flowering time statistics, we found that 5-azaC had a certain effect on the flowering time of all cut chrysanthemums, and all of these cultivars showed extremely early strains. Summer chrysanthemum (‘Yuuka’, ‘Fenguiren’, ‘Xueshen’, and ‘Huangjin’) treatments led to both early and delayed flowering. When the statistics were analyzed for different individuals, we found that the treatments shortened the squaring time in early-flowering plants. In ‘Jinba’, an autumn chrysanthemum, the treatment helped broken juvenile limitations and allowed plants to undergo photoperiod induction in the early stage. Additionally, we also determined the flower diameter differences in these treatments; ray florets from ‘Yuuka’ and ‘Huangjin’ trended to show tubular florets, and the location of tubular and ray florets were changed in ‘Xueshen’ capitulum. In conclusion, on the basis of flowering time in five early varieties of cut chrysanthemum, we propose that 5-azaC may regulate the methylation level of genes that control flower induction and flower development. These results provide phenotypic data and material for exploring the function of DNA methylation in regulating flowering.

Free access

Chinese wild Vitis is a useful gene source for resistance to biotic and abiotic stresses, although there is little research on its genetic diversity and structure. In this study, nine simple sequence repeat (SSR) markers were used to assess the genetic diversity and genetic structure among 100 Vitis materials. These materials included 77 indigenous accessions representing 23 of 38 wild Vitis species/cultivars in China, 18 V. vinifera cultivars, and the five North American species V. aestivalis, V. girdiana, V. monticola, V. acerifolia, and V. riparia. The SSR loci used in this study for establishing an international database (Vitis International Variety Catalogue) revealed a total of 186 alleles in 100 Vitis accessions. The mean values for the gene diversity (GD) and polymorphism information content (PIC) per locus were 0.91 and 0.90, respectively, which indicates that the discriminatory power of the markers is high. Based on the genetic distance data, the 100 Vitis accessions were divided into five primary clusters by cluster analysis, and five populations by structure analysis; these results indicate these Chinese wild grapes were more genetically close to European grapes than to North American species. In addition, the clustering patterns of most accessions correlated with the geographic distribution. An analysis of molecular variance (AMOVA) revealed that 3.28%, 3.27%, and 93.46% of the variance occurred between populations, between individuals within populations, and between individuals within the entire population, respectively. In addition, we identified three previously undescribed accessions (Wuzhi-1, MZL-5, and MZL-6) by cluster analysis. Our results reveal a high level of genetic diversity and variability in Vitis from China, which will be helpful in the use of genetic resources in future breeding programs. In addition, our study demonstrates that SSR markers are highly suitable for further genetic diversity analyses of Chinese wild grapes.

Open Access

Lycoris radiata has beautiful bright-red flowers with both medicinal and ornamental value. However, the mechanisms underlying an unusual characteristic of Lycoris radiata, flowering without leaves, remain unclear. In this study, climatic influences, biomass composition, and yearly variations in bulb contents across eight developmental stages of L. radiata were analyzed. Thus, L. radiata summer dormancy was investigated in three dimensions: climate-associated phenology, biomass distribution characteristics, and physiologic bulb changes. The results showed that dormancy was most strongly affected by high ambient temperature, followed by scape development, flowering, leafing out, vigorous leaf growth, flower bud differentiation, flower bud predifferentiation, and leaf maturation. Biomass allocation, bulb contents, oxidoreductase activity, and root activity fluctuated significantly in L. radiata among developmental stages. Relative bulb dry weight was greatest during the dormant period (95.95% of total dry weight) and lowest during vigorous leaf growth (November–December). Root biomass was also significantly greater during dormancy than during flowering, leaf maturation, and flower bud differentiation. Only root biomass during vigorous leaf growth was greater than root biomass during dormancy. However, in dormant bulbs, soluble sugar content, soluble protein content, root activity, superoxide dismutase (SOD) activity, and peroxidase (POD) activity decreased. Thus, summer dormancy in L. radiata only constitutes a morphologic dormancy of the aboveground plant; the bulb and root remain physiologically active. The results suggest that L. radiata is sensitive to both ambient temperature and light, and that summer dormancy is triggered by the synergistic stimulation of these two factors. Although temperature controls dormancy, it plays only a limited regulatory role during the L. radiata flowering period. Thus, it is difficult to induce flowering or regulate annual flowering in this species through temperature control alone.

Free access