Search Results
Temperature is one of the main factors that affects the growth pattern of Gerbera hybrida, which shows vast variation in morphology and stress adaptation among cultivars. However, little is known about temperature responses of plant growth among different cultivars. In this study, four cultivars were planted in different growth temperatures to investigate the effect of temperature on plant growth of Gerbera hybrida during their vegetative growth. Results showed that the optimum growth temperature of the four cultivars was 20 °C, of which plant height, root length, biomass accumulation, leaf area, and photosynthetic rate were enhanced significantly. Different cultivars showed diverse temperature adaptation ranges, which were related with their genetic background, and the temperature adaptability of cultivar Autumn was the best among the four cultivars. Temperature also had significant effects on photosynthetic rate, which was the main factor shaping plant growth. Our research provides the basic guidance for the growth temperature control in the cultivation of Gerbera hybrida.
The resurrection plant Selaginella pulvinata (Hook. & Grev.) Maxim is used as an ornamental and medicinal plant. It is also a good candidate for exploring the desiccation tolerance of resurrection plants. However, there is not an efficient propagation method for S. pulvinata. In the present study, we evaluated the establishment of in vitro propagation of S. pulvinata using frond tips as explants. The original shoot induction, adventitious shoot proliferation and plantlet growth media, and substrate type of plantlet acclimatization were investigated. The highest induction rate of original shoots (61.77 ± 5.17%) was obtained on half-strength (1/2) MS medium supplemented with 0.1 mg·L−1 N6-benzylaminopurine (BAP). The 1/2 MS with 1.0 mg·L−1 BAP was the most effective medium for the adventitious shoot proliferation. The quarter-strength (1/4) MS containing 0.1% (w/v) active charcoal (AC) was optimum for plantlets proliferated from adventitious shoots and plantlet growth. Approximately 98 plantlets could be obtained from one single original shoot via one-time shoot proliferation cultivation and plantlet cultivation. The acclimated plants on a 5:1 (v/v) mixture of peat and perlite had the highest survival rate (92.13 ± 1.67%). The acclimated plants maintained excellent resurrection ability.
To describe the influence of different pecan seedling rootstocks on drought stress resistance, 12 rootstocks of ‘87MX1-2.2’, ‘87MX5-1.7’, ‘Elliott’, ‘Frutoso’, ‘Giles’, ‘Major’, ‘Moore’, ‘Peruque’, ‘Posey’, ‘Riverside’, ‘San Felipe’, and ‘VC1-68’ were selected as rootstock treatments for grafting. In addition, the experimental materials for the grafted young ‘Pawnee’ tree treatments included the pressure-volume technique (PV technique) and cutting shoot transpiration methods to plot the PV and the cutting shoot transpiration curves, and the parameters calculated from the two curves were used to analyze the data produced by the subordinate function and cluster dendrogram methods. The results revealed that the different seedling rootstock treatments influenced the ‘Pawnee’ grafted trees to varying degrees on aspects of drought resistance, the ability to save water, the modulation of osmosis, and the sensitivity of the stomatal response. The order of drought tolerance for these different pecan seedling rootstock treatments from high to low was as follows: ‘Posey’, ‘Peruque’, ‘Riverside’, ‘87MX5-1.7’, ‘VC1-68’, ‘Elliott’, ‘87MX1-2.2’, ‘San Felipe’, ‘Moore’, ‘Major’, ‘Giles’, and ‘Frutoso’.
Pecan cuttings are difficult for rooting. This study describes the pecan hardwood rooting process based on anatomic characteristics to understand root formation mechanisms of pecan cuttings. The expressed proteins of different periods during the adventitious rooting process of pecan seedling hardwood cuttings were identified and analyzed to evaluate the rooting mechanism. The expressed proteins of pecan cutting seedlings were also compared with other cultivar cuttings during the rooting period. Pecan seedling cuttings were developed at different air and substrate temperatures to induce root formation. Adventitious root formation of pecan hardwood cuttings was described, and the phloem at the base of the prepared cuttings was selected as the sample for the differential protein analysis. The results showed that adventitious root formation of pecan hardwood cuttings was the only product of callus differentiation, which originated from the cells of the cambium or vascular ray parenchyma. Such adventitious root primordia were developed from those calluses that formed the regenerative structure, and the expressed proteins during the adventitious rooting of pecan hardwood cutting were identified and analyzed by matrix-assisted laser desorption ionization–time of flight–mass spectrometry (MALDI-TOF-MS) to evaluate the rooting mechanism. Eight differentially expressed proteins were found in the rooting periods, and 15 differential proteins were found by comparing pecan cutting types, which were analyzed by peptide mass fingerprinting homology. The results show that the primordial cells were differentiated from the meristematic cells. Furthermore, the differentially expressed proteins contained energy metabolism proteins, adversity stress proteins, and signal transmission proteins. The energy metabolism-related proteins were adenosine triphosphate (ATP) synthase, photosynthesis-related proteins, and enolase. The adversity-stress proteins containing heat shock-related proteins and signal transmission proteins were mainly cytochrome enzymes and heme-binding proteins. Adventitious root formation of pecan cultivar hardwood cuttings was difficult. More trials should be performed from the potential aspects of high defensive protection and phloem morphologic structure.
We quantitatively assessed the effects of a six-session edible horticultural therapy (EHT) program on long-term-hospitalized (LTH) female patients with schizophrenia. A total of 60 patients were enrolled in the project and randomly divided into an experimental group (30 patients, received EHT) and a control group (30 patients, did not receive EHT). The two groups were evaluated before and after EHT using the Brief Psychiatric Rating Scale (BPRS), the Chinese version Scale of Social Functioning for Psychotic Inpatients (SSFPI), and the Life Satisfaction Index A (LSIA). The clinical symptoms of patients with schizophrenia improved significantly and they recovered social function, but there was no significant change in life satisfaction. In the control group, clinical symptoms recovered but there was no improvement in social function and life satisfaction significantly decreased. In addition, patients in the EHT group expressed satisfaction with the program. In conclusion, EHT can improve the clinical symptoms of schizophrenia and promote recovery of social function; however, its impact on life satisfaction remains unclear.
Luculia pinceana is a potential cut flower because of its long-term blooming inflorescences and charming fragrance. However, its narrow distribution area and unexplored wild status severely restrict its applications, thus leading to the scientific research of cut L. pinceana flowers. To our knowledge, there is no available published information about the postharvest fresh-keeping of L. pinceana. During this study, the cut flowers of L. pinceana were tested using nine preservatives with different concentrations of sucrose and 8-hydroxyquinoline (8-HQ) to evaluate the fresh-keeping effects. Through the investigation and analysis of vase life, bud opening and abortion rate, water balance, malonaldehyde (MDA) content, and peroxidase (POD) activity, we selected and identified the best vase solution for cut L. pinceana flowers. The results suggested that the preservative of 1% sucrose and 100 mg/L 8-HQ could significantly prolong the vase life of cut L. pinceana flower up to 9 days compared with water control. This solution positively affects flower bud blooming, delays flower senescence, improves the water balance, inhibits the MDA accumulation, and increases POD activity. Therefore, this preservative is suitable for the fresh-keeping of cut L. pinceana flowers. Our study is the first to report the effects of preservatives on cut L. pinceana flower. The results showed that the low-sugar-containing (1% sugar) preservatives can effectively improve the ornamental quality of fresh flowers and demonstrated that the postharvest fresh-keeping of L. pinceana requires low sugar and is insensitive to microorganisms.
Half or whole root systems of micropropagated `Gala' apple (Malus ×domestica Borkh.) plants were subjected to drought stress by regulating the osmotic potential of the nutrient solution using polyethylene glycol (20% w/v) to investigate the effect of root drying on NO3- content and metabolism in roots and leaves and on leaf photosynthesis. No significant difference in predawn leaf water potential was found between half root stress (HRS) and control (CK), while predawn leaf water potential from both was significantly higher than for the whole root stress (WRS) treatment. However, diurnal leaf water potential of HRS was lower than CK and higher than WRS during most of the daytime. Neither HRS nor WRS influenced foliar NO3- concentration, but both significantly reduced NO3- concentration in drought-stressed roots as early as 4 hours after stress treatment started. This reduced NO3- concentration was maintained in HRS and WRS roots to the end of the experiment. However, there were no significant differences in NO3- concerntation between CK roots and unstressed roots of HRS. Similar to the effect on root NO3- concentration, both HRS and WRS reduced nitrate reductase activity in drought-stressed roots. Moreover, leaf net photosynthesis, stomatal conductance and transpiration rate of HRS plants were reduced significantly throughout the experiment when compared with CK plants, but the values were higher than those of WRS plants in the first 7 days of stress treatment though not at later times. Net photosynthesis, stomatal conductance and transpiration rate were correlated to root NO3- concentration. This correlation may simply reflect the fact that water stress affected both NO3- concentration in roots and leaf gas exchange in the same direction.