Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: F.S. Zazueta x
Clear All Modify Search

Strawberry (Fragaria ×ananassa Duch.) was grown for two seasons with microirrigation. Preplant fertilizer treatments of zero, one, two, three, and four times the basic N and K rate of 17 and 15 kg·ha–1, respectively, were applied each season. Additional N and K were applied twice weekly through the microirrigation system at 1.12 and 0.92 kg·ha–1·day–1, respectively. Total marketable fruit yield and marketable fruit per plant were not affected by preplant fertilizer rate. The percentage of marketable fruit increased with increased preplant fertilizer to the 51N–45K (three times basic rate) kg·ha–1 rate the first season. Average fruit weight increased the first season but decreased the second season with increased preplant fertilizer. Plants were larger the first season in treatments receiving preplant fertilizer.

Free access

Sixteen field-located drainage lysimeters (each 60 cm wide, 2.44 m long, 60 cm deep) designed specifically for determination of water requirements for fruiting strawberry production (season - Oct to April) were installed in 1986. Each lysimeter was equipped with individual micro-irrigation and drainage collection systems automated for minimal management input. Initially, computer control (using a low-cost microcomputer) was used to continuously check switching-tensiometers located in each lysimeter and apply irrigation water as needed, A drainage suction (-10 MPa) was applied continuously to simulate field drainage conditions. Manually-installed lysimeter covers were used to protect the plots from interference from rainfall when needed, Initial irrigation application treatments were set at four levels of soil moisture tension controlled by tensiometers and were measured using flow meters for each lysimeter. This paper will discuss problems that were experienced with the initial setup (difficulty in measuring actual application amounts, tensiometer and computer control, elimination of rainfall interference, uniformity of irrigation application, and salinity in the rooting zone) and the modifications (pressurized reservoir tanks, construction of motorized rain-out shelter, micro-irrigation emitters used, and fertilization program) which have been made to overcome them,

Free access