Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: F. Omar Holguín x
Clear All Modify Search
Free access

Andrea L. Medina-Holguín, Sandra Micheletto, F. Omar Holguín, Jaime Rodriguez, Mary A. O'Connell and Charles Martin

The climate conditions and chemical composition of root essential oils for 17 populations of Anemopsis californica in New Mexico were examined. The objective of this study was to observe the effect of environmental conditions and management conditions on essential oil composition in different populations of A. californica. Chemical concentrations of three abundant compounds—methyleugenol, thymol, and piperitone—were determined. Maximum accumulations of each compound were associated with different mean annual temperatures, precipitation, and elevation. Similar chemical profiles were detected in root samples recollected for four populations, suggesting retention of unique chemical profiles in different populations. Vegetative propagation of wild plants under cultivated conditions did not significantly alter the chemical profile of the root essential oil. The chemical concentrations for six essential oil components of A. californica roots were determined under field conditions with varying irrigation and nitrogen (N) fertilizer regimens. The concentration of only two compounds, thymol and piperitone, was increased by increasing irrigation. The concentration of all other compounds, methyeugenol, elemicin, 1,8-cineole, and myrtenol, were independent of the irrigation rates and N fertilizer rates used in the study. These results suggest that the chemical variability observed among different populations of A. californica is primarily genetically controlled and the environmental conditions in New Mexico are conducive to the production of this medicinal plant as a high-value crop.

Free access

Richard D. Richins, Laura Hernandez, Barry Dungan, Shane Hambly, F. Omar Holguin and Mary A. O'Connell

Plant pigments represent a source of non-toxic compounds that are used as food or cosmetic coloring agents. Red-fruited varieties of Capsicum annuum can be extracted to isolate the red-colored xanthophylls, capsanthin, and capsorubin. Common commercial processes for this extraction use hexane as the extracting solvent and mild or no heat varieties of Capsicum. In this report, we describe a process for efficient extraction of these red pigments using green chemistry: CO2 supercritical fluid extraction and trapping the pigments in ethanol. Furthermore, we demonstrate that this method can be performed on hot or pungent Capsicum fruit and the resulting pigment sample has very low levels of capsaicinoids, 1 to 2 ppm. This process then can reduce the use of hazardous solvents and expand the type of fruit that can be used for the extraction of red pigments.