Search Results
A detailed genomic linkage map of the olive [Olea europaea L. ssp. europaea (2x = 2n = 46)] was constructed with a 147 F1 full-sib ‘Olivière’ × ‘Arbequina’ progeny in a two-way pseudo-test cross-mapping configuration. Based on a logarithm of odds threshold of 6 and a maximum recombination fraction of 0.4, maternal and paternal maps were constructed using 222 makers [178 amplified fragment length polymorphism (AFLP), 37 simple sequence repeat (SSR), seven intersimple sequence repeat (ISSR)] and 219 markers (174 AFLP, 39 SSR, 6 ISSR) markers, respectively. The female map regrouped 36 linkage groups (LGs) defining 2210.2 cM of total map length with an average marker spacing 11.2 cM and a maximum gap of 48.5 cM between adjacent markers. The male map contained 31 LGs and covered a distance of 1966.2 cM with an average and a maximum distance between two adjacent markers of 10.3 and 40.4 cM, respectively. Mean LG size was 61.3 and 63.4 cM in the maternal and paternal maps, respectively. The LGs consisted of two to 17 loci (up to 21 loci in the paternal map) and ranged in length from 2.7 to 182 cM (female map) or from 4.1 to 218.1 cM (paternal map). Markers were distributed throughout the maps without any clustering. The total length of the consensus map was 3823.2 cM containing 436 markers distributed into 42 LGs with a mean distance between two adjacent loci of 8.7 cM. Both parental maps and the consensus maps were compared with previously published olive maps. Although not saturated yet, the present maps offer a promising tool for quantitative trait loci mapping because phenotypic characterization of the cross is currently carried out.
Different almond (Prunus dulcis) cultivars have been characterized by their contrasting shoot branching patterns; however, the differences between patterns have been difficult to quantify. This study aimed to model the branching patterns of 2-year-old proleptic shoots on three almond cultivars (Nonpareil, Aldrich, and Winters) representing different tree architectures. The effects of branching pattern on flowering were also studied. The branching patterns of shoots of different length categories were assessed by a single hidden semi-Markov model for each cultivar. The models identified zones of homogeneous branching composition along shoots and were used to extract the occurrence and number of nodes of the zones according to shoot length categories. The numbers of flower buds were also determined for each shoot length category in each cultivar. The models of branching patterns of ‘Nonpareil’ and ‘Aldrich’ were similar and differed from the ‘Winters’ model. ‘Winters’ shoots produced more zones, but some of the zones had similar characteristics as previous zones and thus appeared to be repeated. This cultivar also had more spurs and sylleptic shoots than the other cultivars. The occurrence and node number of the central zones decreased along with reduction in shoot length in all the cultivars. ‘Aldrich’ tended to have more flower buds than comparable-length shoots of the other two cultivars. This study provides a quantitative description of the shoot branching patterns of three important cultivars and explains how branching changes in relation to shoot length, whereas production of flower buds varies despite similar branching patterns.