Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Erik Lichtenberg x
Clear All Modify Search

Improvements in sensor technology coupled with advances in knowledge about plant physiology have made it feasible to use real-time substrate volumetric water content sensors to accurately determine irrigation timing and application rates in soilless substrates in greenhouse and container production environments. Sensor-based irrigation uses up-front investments in equipment and system calibration in return for subsequent reductions in irrigation water use and associated costs of energy and labor, spending on fertilizer, and disease losses. It can also accelerate production time. We present formulas for assessing profitability when benefits and costs are separated in time and apply those formulas using data from an experiment on production of gardenia [Gardenia augusta ‘MADGA 1’ (Heaven Scent™)]. Sensor-controlled irrigation cuts production time and crop losses by more than half. Annualized profit under the wireless sensor system was over 1.5 more than under the nursery’s standard practice, with the bulk of the increase in profit due to the reduction in production time. These results indicate that controlling irrigation using wireless sensor systems is likely to increase profitability substantially, even if efficiency gains are not as high as those achieved under experimental conditions.

Full access

Irrigation management systems that use wireless transmission of substrate moisture data are beginning to become commercially available for ornamental growers, particularly for use in soilless substrates. These systems allow growers to precisely monitor and control irrigation in real time and are being shown to save time and other resources. On-farm evaluations indicate that these systems have potential benefits extending beyond reductions in water use and associated irrigation inputs: Some growing systems experience increases in plant growth rates, with corresponding reductions in production time, whereas some experience reductions in disease pressure and corresponding plant losses. We asked ornamental growers across the nation what they see as potential benefits and limitations of these systems as a means of assessing the likely state of acceptance of this technology at the time of its initial introduction. Grower perceptions were overwhelmingly positive, with the majority of respondents agreeing that wireless sensor systems can increase irrigation efficiency, improve product quality, reduce product losses, reduce irrigation management costs, reduce disease prevalence, increase ability to manage growth, reduce irrigation management costs, and reduce monitoring costs. System cost and reliability were major concerns. Grower perceptions of the benefits and drawbacks of irrigation sensor networks varied across size and type of operation as well as geographically and by the type of water source used. Making wireless sensor systems affordable and robust will likely be critical determinants of the speed and reach of adoption of these technologies.

Full access

Irrigation scheduling in ornamental plant production is complex due to the large number of species grown by individual growers and the need to consider plant, environment, and substrate conditions to make correct irrigation decisions on a daily or more frequent basis. The engineering team in our project has developed a smart wireless sensor node that is capable of integrating outputs from a range of soil moisture and environmental sensors to schedule irrigation events. In addition, an advanced monitoring and control software enables growers to manage irrigation based on set-point or model-based protocols, which are then independently executed by the nodes, enhancing or replacing human decision making. During 2012, we implemented a sensor-controlled vs. grower-controlled irrigation study at a pot-in-pot nursery in Tennessee. Sensor networks were installed in two separate production blocks of 3-year-old dogwood (Cornus florida ‘Cherokee Brave’) and 2-year-old red maple (Acer rubrum ‘Autumn Blaze’) trees grown in 15- and 30-gal containers, respectively. One row of trees in each block was irrigated based on the average reading of soil moisture sensors inserted in individual trees using micropulse irrigation, i.e., sensor controlled. Trees in the adjacent row and the rest of the block were independently irrigated by the grower using standard practices, i.e., grower controlled. Sensor volumetric water content (VWC) readings and irrigation volumes were logged by nodes on a 15-min basis and were relayed to a base station on the farm. For the study period between Mar. 2012 and Nov. 2012, average daily water applied by the grower-controlled irrigation to the dogwood block was 0.92 gal/tree, compared with 0.34 gal/tree applied using sensor-controlled irrigation; for red maple, these values were 1.72 gal/tree and 1.13 gal/tree, respectively. No significant differences in tree caliper or quality were noted between the two irrigation treatments in either species over the year. The cost of water for this particular operation was negligible consisting only of pumping costs, as water is drawn from a perennial stream with excellent water quality. Consequently, a conservative return on investment for a wireless sensor network capable of covering the entire operation was 37.5%, corresponding to a payback period of 2.7 years, associated almost entirely from a reduction in irrigation management time. Pricing in a nominal cost for water of $326 per acre-foot ($1 per 1000 gal) increased annualized net savings 9-fold, reducing the payback period to less than 4 months. This analysis did not factor in additional economic benefits such as reductions in production time, losses due to disease, or increased plant quality, which have been associated with the use of sensor-based irrigation control in other studies.

Full access

Wireless sensor networks (WSNs) transmit sensor data and control signals over long distances without the need for expensive infrastructure, allowing WSNs to add value to existing irrigation systems since they provide the grower with direct feedback on the water needs of the crop. We implemented WSNs in nine commercial horticulture operations. We provide an overview of the integration of sensors with hardware and software to form WSNs that can monitor and control irrigation water applications based on one of two approaches: 1) “set-point control” based on substrate moisture measurements or 2) “model-based control” that applied species-specific irrigation in response to transpiration estimates. We summarize the economic benefits, current and future challenges, and support issues we currently face for scaling WSNs to entire production sites. The series of papers that follow either directly describe or refer the reader to descriptions of the findings we have made to date. Together, they illustrate that WSNs have been successfully implemented in horticultural operations to greatly reduce water use, with direct economic benefits to growers.

Full access