Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Ep Heuvelink x
  • Refine by Access: All x
Clear All Modify Search
Free access

Tadahisa Higashide and Ep Heuvelink

Greenhouse tomato (Solanum lycopersicum) yield in The Netherlands has increased tremendously over the past 50 years. The effects of breeding during this period were investigated. Eight Dutch cultivars and one typical current Japanese cultivar that were released over the past 50 years were compared in a short-term experiment conducted from summer to fall in The Netherlands. Fresh fruit yield of the Dutch cultivars significantly increased ≈0.9% per year with the year of release from 1950 to 2000. Dry weight fruit yield of the Dutch cultivars also increased with the year of release, whereas the fruit dry matter content was not correlated with the year of release. Total dry matter production of plants increased with the year of release, and the dry matter partitioning to fruit was not correlated with the year of release. An increase in dry matter production was caused not by an increase in fraction of intercepted light, but by light use efficiency based on correlations between each of them and the year of release. The light extinction coefficient in the plant canopy decreased, whereas leaf photosynthetic rate increased significantly with the year of release. Although fresh fruit yield of the Japanese cultivar was lower than that of the modern Dutch cultivars, fruit dry matter content of the Japanese cultivar was higher than that of the Dutch cultivars. An increase in yield over the past 50 years in Dutch tomato was caused by an increase in light use efficiency resulting from a decrease in light extinction coefficient (a morphological change) and an increase in leaf photosynthetic rate (a physiological change).

Free access

Anke van der Ploeg, Susana M.P. Carvalho, and Ep Heuvelink

Energy efficiency of greenhouse cut chrysanthemum (Chrysanthemum morifolium Ramat.) may be increased by breeding. In addition to breeding for cultivars with a shorter reaction time at suboptimal temperatures, an alternative approach would be to develop cultivars that are heavier at suboptimal temperatures so that they could be grown at a higher plant density, enhancing the production per unit area. Therefore, the combined effect of temperature and plant density on growth and development of four cut chrysanthemum cultivars was investigated in three greenhouse experiments, carried out in different seasons. For growth-related traits, no interactions between temperature and cultivar were found, limiting the possibilities for breeding. At suboptimal temperatures, growth rate early in the cultivation period decreased as a consequence of a lower light interception resulting from a lower specific leaf area. Thus a higher dry mass production at lower temperature could only be explained by a longer cultivation time. Temperature also influenced external quality, but these effects were cultivar dependent. For instance, temperature affected the slope of the positive linear relationship between total dry mass and number of flowers, reducing number of flowers at low temperature for the same plant dry mass. It is concluded that there are possibilities for breeding for suboptimal temperature-tolerant cultivars.

Free access

A. Maaike Wubs, Yuntao Ma, Lia Hemerik, and Ep Heuvelink

Fruit set and yield patterns were studied in detail in six pepper cultivars. Fruit set differed largely between the cultivars: cultivars with small fruits (fruit fresh weight 20 to 40 g) showed higher fruit set (≈50%) than cultivars with large fruits (fruit fresh weight 120 to 200 g; 11% to 19%). The former showed continuous fruit set (four to five fruits/plant/week), whereas the latter showed fluctuations in fruit set. Fluctuations in weekly fruit set, expressed as the ratio between standard deviation of weekly fruit set and the mean of weekly fruit set (cv), were much lower for the cultivars with small fruits (0.44 to 0.49) than for the cultivars with large fruits (1.1 to 1.6). Fluctuations in weekly fruit yield varied between 0.51 and 0.77 for cultivars with small fruits and between 1.04 and 1.45 for cultivars with large fruits. Fluctuations in fruit yield were significantly positively correlated (Pearson R = 0.87) with fluctuations in fruit set. The correlation between fruit set and fruit yield patterns was highest with a lag time of 8 weeks for the cultivars with small fruits and 9 to 10 weeks for the cultivars with large fruits. This corresponds with the expected lag time based on the average fruit growth duration. The cultivars produced the same amount of biomass, implying that source strength was more or less similar. Hence, differences in fruit set and fruit yield patterns between the cultivars were not the result of differences in source strength and must therefore be related to differences in sink strength.

Free access

A. Maaike Wubs, Yun T. Ma, Ep Heuvelink, Lia Hemerik, and Leo F.M. Marcelis

Quantifying fruit growth can be desirable for several purposes (e.g., prediction of fruit yield and size, or for the use in crop simulation models). The goal of this article was to determine the best sigmoid function to describe fruit growth of pepper (Capsicum annuum) from nondestructive fruit growth measurements. The Richards, Gompertz, logistic, and beta growth functions were tested. Fruit growth of sweet pepper was measured nondestructively in an experiment with three different average daily temperatures (18, 21, and 24 °C) and in an experiment with six cultivars with different fruit sizes (20 to 205 g fresh weight). Measurements of fruit length and fruit diameter or circumference were performed twice per week. From these, fruit volume was estimated. A linear relationship related fruit fresh weight to estimated fruit volume, and a Ricker or polynomial function related fruit dry matter content to fruit age. These relations were used to convert estimated fruit volume into fruit fresh and dry weights. As dry weight increased until harvest, fitting the sigmoid function to the dry weight data was less suitable: it would create uncertainty in the estimated asymptote. Therefore, the sigmoid functions were fitted to fresh weight growth of the fruit. The Richards function was the best function in each data set, closely followed by the Gompertz function. The fruit dry weight growth is obtained by multiplication of the sigmoid function and the function relating fruit dry matter content to fruit age.

Free access

Anke van der Ploeg, Ranathunga J.K.N. Kularathne, Susana M.P. Carvalho, and Ep Heuvelink

To breed for more energy-efficient cut chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars it is important to know the variation of the temperature response existing in modern cultivars. In a greenhouse experiment with 25 chrysanthemum cultivars, a significant variation was observed in temperature response (16 °C or 20 °C) for reaction time, total dry weight produced, stem length, and flower size and number. To study this genetic variation in temperature response over a larger range of temperatures (15 °C to 24 °C), four contrasting cultivars (Annecy, Delianne, Reagan, and Supernova) were selected in a second experiment. Furthermore, a third experiment was performed in which the cultivation period was split into three phases and the influence of temperature in each of these phases was studied for the four selected cultivars. Dry weight production in all cultivars was very sensitive to temperature during the long day period. Relative growth rate showed an optimum response to temperature, with the optimum around 24 °C. Net assimilation rate also showed an optimum response to temperature, whereas leaf area ratio increased linearly with temperature. Compared with these temperature effects during the long day, the effect of temperature on absolute growth rate during the short day was, depending on the cultivar, relatively small or even absent. The reaction time, on the other hand, was very temperature sensitive, showing an optimum that was cultivar dependent. The temperature response of the total dry weight production during the whole cultivation period was, therefore, very cultivar dependent. Furthermore, depending on the cultivar, stem length increased with temperature, especially during long day, as a result of both increasing internode number and average internode length. The response of both flower size and number to temperature was also highly cultivar specific. The possibilities of using this genetic variation for breeding are discussed.

Free access

Julienne Fanwoua, Pieter de Visser, Ep Heuvelink, Gerco Angenent, Xinyou Yin, Leo Marcelis, and Paul Struik

To improve our understanding of fruit growth responses to temperature, it is important to analyze temperature effects on underlying fruit cellular processes. This study aimed at analyzing the response of tomato (Solanum lycopersicum) fruit size to heating as affected by changes in cell number and cell expansion in different directions. Individual trusses were enclosed into cuvettes and heating was applied either only during the first 7 days after anthesis (DAA), from 7 DAA until fruit maturity (breaker stage), or both. Fruit size and histological characteristics in the pericarp were measured. Heating fruit shortened fruit growth period and reduced final fruit size. Reduction in final fruit size of early-heated fruit was mainly associated with reduction in final pericarp cell volume. Early heating increased the number of cell layers in the pericarp but did not affect the total number of pericarp cells. These results indicate that in the tomato pericarp, periclinal cell divisions respond differently to temperature than anticlinal or randomly oriented cell divisions. Late heating only decreased pericarp thickness significantly. Continuously heating fruit reduced anticlinal cell expansion (direction perpendicular to fruit skin) more than periclinal cell expansion (direction parallel to fruit skin). This study emphasizes the need to measure cell expansion in more than one dimension in histological studies of fruit.

Free access

A. Maaike Wubs, Ep Heuvelink, Leo F.M. Marcelis, Gerhard H. Buck-Sorlin, and Jan Vos

When flower-bearing shoots in cut rose (Rosa ×hybrida) are harvested, a varying number of repressed axillary buds on the shoot remainder start to grow into new shoots (budbreak). Earlier experiments indicated that light reaching the bud affected the number of budbreaks. In all these studies, whole plants were illuminated with different light intensities or light spectra. The aim of this article is to disentangle the effects of light intensity and light spectrum, in this case red:far-red ratio, at the level of the buds on budbreak in a rose crop. Three experiments were conducted in which light intensity and red:far-red ratio at the level of the buds were independently varied, whereas intensity and red:far-red ratio of incident light on the crop were not changed. Light intensity and red:far-red ratio at the position of the buds were quantified and related to budbreak on the shoot remainders. Removal of vertical shoots increased light intensity and red:far-red ratio as well as budbreak (1.9 budbreaks per shoot remainder compared with 0.4 budbreaks when five vertical shoots were present). No vertical shoots and red light-absorbing shading paper over the plant base mimicked the effect of vertical shoots with respect to light intensity and red:far-red ratio, but budbreak (1.0 budbreaks) was intermediate compared with treatments with and without shoots. This suggested that the presence of shoots exerts an inhibiting effect on budbreak through both effects on light at the bud and correlative inhibition. When plants had no vertical shoots and light intensity and red:far-red ratio at bud level were changed by neutral and red light-absorbing shading paper, there was a positive effect of light intensity on budbreak (0.3 more budbreaks per shoot remainder) and no effect of red:far-red ratio. Combinations of high and low light intensity with high and low red:far-red ratio on axillary buds showed that there was a positive effect of light intensity on budbreak (0.5 more budbreaks per shoot remainder) and no effect of red:far-red ratio. Our study reveals that when light intensity and red:far-red ratio received by the plant are similar but differ at bud level, budbreak was affected by light intensity and not by red:far-red ratio.

Free access

A. Maaike Wubs, Ep Heuvelink, Leo F.M. Marcelis, Robert C.O. Okello, Alisa Shlyuykova, Gerhard H. Buck-Sorlin, and Jan Vos

When flower-bearing shoots in cut-rose (Rosa ×hybrida) are harvested (removed), a varying number of repressed axillary buds on the shoot remainder start to grow into new shoots (budbreak). Besides removing within-shoot correlative inhibition, it is hypothesized that shoot removal leads to 1) increased light intensity lower in the crop canopy; 2) changes in the light spectrum (particularly red:far-red ratio); and 3) changed source:sink ratio (i.e., the ratio between supply and demand of assimilates). As a fourth hypothesis it is proposed that the degree of budbreak on a shoot remainder is also influenced by the correlative inhibition exerted by other shoots on the plant. It is the goal of this work to determine which of these four hypotheses is most important for budbreak in a cut-rose crop. Four experiments were conducted, in which these factors were varied by leaf removal, removal of mature shoots, varying the number of young shoots, shading of the crop, and application of direct light on the buds. Increase in source:sink ratio was not consistently associated with higher budbreak. If source:sink ratio was decreased by removal of leaves or a mature shoot, budbreak showed even a tendency to increase. Budbreak was subject to correlative inhibition exerted by other shoots on the plant. Treatments where more light reached the bud (as a result of less shoots, no shading of the crop, application of local light) increased budbreak. Increased red:far-red ratio had the same result as more light reaching the bud but was often interrelated with light intensity. It was concluded that after removal of the flower-bearing shoot, among the factors tested, light intensity on the buds was an important and consistent factor explaining budbreak on the shoot remainder, whereas the effect of light spectrum should be further investigated.