Search Results

You are looking at 1 - 10 of 53 items for

  • Author or Editor: Ed Stover x
Clear All Modify Search
Full access

Ed Stover

The relationship between intensity of flowering and various aspects of cropping are reviewed for fruit species. Relatively light flowering can limit yield in most fruit species. This commonly occurs in young trees that have not achieved full production and in “off” years for varieties that display alternate bearing. When trees mature, many species will carry fruit numbers that exceed commercially desired levels, resulting in excessively small fruit and accentuating alternate bearing. The economic disadvantages of excess cropload have resulted in considerable research on fruit thinning and widespread commercial application of this practice. Heavy flowering intensity in some crop species results in economic disadvantages beyond the problems of excessive cropload and resultant small fruit size. Many species flower profusely and have initial fruit set that greatly exceeds tree capacity, resulting in abscission of numerous flowers and fruitlets. Abscised organs can represent a substantial amount of carbohydrates and nutrients, compromising availability of these materials at critical periods in flower and fruit development. The potential implications of this process are best exemplified in `Navel' orange [Citrus sinensis (L.) Osbeck], where an increase in flowering beyond intermediate intensity results in a reduction in both initial fruit set and final fruit yield at harvest. In several species, there is evidence that fruit size may be reduced by excessive flowering, even when cropload is quickly adjusted to an acceptable level. These data suggest that further research on the advantages of controlling flowering intensity is warranted.

Full access

Ed Stover and William Castle

Sour orange (Citrus aurantium) has been the dominant citrus rootstock in the Indian River region of Florida since the initial plantings in the 1880s. Use of this rootstock in new plantings has been rare since 1990 because of heightened concern about decline strains of citrus tristeza virus (CTV), to which this rootstock is highly susceptible. Because the proportion of trees remaining on sour orange rootstock and the rate of decline among them are important in predicting the economic consequences for the Indian River citrus industry, two surveys of rootstock usage were conducted for citrus in this growing region. In the first survey, growers were asked about rootstock usage and problems observed across all types of citrus, and responses represented 35% of acreage. In the second survey, growers were restricted to rootstock usage and grower observations on decline for grapefruit (C. paradisi), and responses represented 53% of acreage. Even though 44% of all current Indian River grove area has been planted since 1987, when use of sour orange for new plantings largely ceased, 48% of all citrus and 55% of all grapefruit grove area are currently on sour orange rootstock. The percentage of grapefruit trees on sour orange rootstock that showed significantly health decline in 2000 was 8% based on grower reports. The other root-stocks representing substantial commercial grove area have known problems and limitations that are likely to prevent any of them from gaining the prominence once held by sour orange. Swingle citrumelo (C. paradisi × Poncirus trifoliata) at about 25% of grove area, Cleopatra mandarin (Citrus reticulata) at about 8%, and Smooth Flat Seville (Citrus hybrid) at about 3% all represented similar acreage for grapefruit and across all cultivars, while Carrizo citrange (C. sinensis × P. trifoliata) use was reported for 4% of grapefruit and 13% overall. Evaluation and development of new rootstocks is vitally important for the Indian River area, especially for soils with significant clay and calcium content.

Free access

Ed Stover and Greg McCollum

Incidence and severity of Huanglongbing (HLB) disease were assessed in Apr. 2010 among eight citrus cultivars representing diverse scion types growing in commercial groves in Florida's Indian River region, an area with a high incidence of HLB. In each grove, 20 trees of each cultivar were rated for visual HLB symptoms and leaves were collected for quantitative polymerase chain reaction quantification of Candidatus Liberibacter asiaticus (CLas), the presumptive causal agent of HLB. There was a strong correlation between HLB rating and CLas titer (titer represented by Ct, r 2 = 0.37 and 0.40, for whole tree and leaf sample, respectively, both with P < 0.0001) across all cultivars and groves. Although incidence and severity of HLB varied considerably among the groves, scion-specific differences were apparent, even when analyses excluded potentially confounding grove effects. ‘Temple’ tangor showed the most consistently low incidence of HLB symptoms and CLas titer; in contrast, ‘Murcott’ tangor and ‘Minneola’ tangelo had the highest incidence of HLB symptoms and highest CLas titer. These results suggest useful resistance to HLB with reduced symptoms and reduced CLas titer may be found in conventional scion cultivars and further work is needed to assess this potential and its commercial value.

Full access

Kim E. Hummer and Ed Stover

Free access

Ed Stover and Eric W. Mercure

Full access

Ed Stover, Dominick Scotto and James Salvatore

Pesticide spray practices for citrus (Citrus spp.) in the Indian River region of Florida were surveyed in 2001 as the first step in identifying opportunities for improving efficiency and reducing potential environmental impact. The survey covered 73% of grapefruit (C. paradisi) acreage in Indian River, St. Lucie, Martin and Palm Beach counties, comprising 70% of all Indian River commercial grapefruit. Large differences in spray practices were revealed. The focus of this survey was grapefruit spraying, since grapefruit represent 59% of fresh citrus shipped from the Indian River region, and are sprayed more intensively than citrus fruit grown for processing. In commercial groves, almost all foliar sprays to grapefruit are applied using air-assisted sprayers pulled through the groves by tractors. Use of engine-driven and power-takeoff-driven sprayers were reported with equal frequency and accounted for 89% of spray machines used. Lowvolume Curtec sprayers comprised the remainder. Spray volume for grape-fruit varied: 7.6% of acreage was sprayed at 25 to 35 gal/acre (230 to 330 L·ha-1) for all sprays; 4.2% was sprayed at 100 to 170 gal/acre (940 to 1600 L·ha-1) for all sprays; 15.3% was sprayed at 200 to 380 gal/acre (1900 to 3600 L·ha-1) for all sprays; 28.2% was sprayed at 450 to 750 gal/acre (4200 to 7000 L·ha-1) for all sprays; and 44.5% of grapefruit acreage was sprayed in a progressive manner from lower to higher volume as the season progresses. Many mid and high spray volume growers reported unacceptable results when they lowered spray volume. Although correlation was moderate (r = 0.35 to 0.45), regressions indicated that both total foliar pesticide spray material costs, and annual fungicidal copper (Cu) use increased with spray volume used for postbloom fungicides. Mean Cu use per acre was in the middle of the recommended range. All growers reported adjusting nozzling for tree height within a grove, and since Indian River groves are bedded, growers adjusted sprayer output differently for trees on bed tops versus furrows on 85% of acreage. Sprayers were shut off for missing trees on 83% of acreage, but this was done only for two or more adjacent trees on almost half of this area. Sensor-actuated sprayers were used to minimize off-target application on 14.7% of grapefruit acreage, but for an additional 21% of acreage, growers reported trying and abandoning this technology. While 88% of grove acreage was sprayed during the day, 75% of acreage sprayed using less than 100 gal/acre was sprayed at night. Growers reported no defined protocol for ceasing spray operations based on environmental conditions.

Full access

Kathy Davis, Ed Stover and Ferdinand Wirth

Hundreds of fruit thinning experiments have been reported for various fruits including apple (Malus × domestica) and citrus (Citrus spp.). Unfortunately, very few of these reports attempt to evaluate the economic implications of thinning. Researchers routinely report significant cropload reduction accompanied by an increase in fruit size. Although these are crucial responses to thinning, they are not always associated with an increase in crop value, which is the commercial justification for thinning. The few economic studies summarized in this review illustrate that the economic effects of fruit thinning vary widely, and successful thinning often reduces returns to the grower, at least in the year of treatment. It is important to quantify the economic benefits of thinning and identify croploads that balance the trade-off between yield and fruit size to provide optimal crop value. Future thinning research should report total yields and fruit size distributions to permit economic assessments and comparisons of treatments.

Full access

Ed Stover, James Salvatore and Ferdinand Wirth

Sensor-actuated precision spray systems are designed to prevent pesticide delivery unless canopy is detected in the corresponding spray zone. Where frequent gaps are present in the tree row, using orchard sprayers with these systems is likely to lower pesticide costs and reduce off-target deposition. Pesticide savings from use of a sensor-actuated precision spray system were assessed in 27 grapefruit (Citrus paradisi) blocks selected without prior knowledge of grove characteristics, with nine blocks in each of three age categories: 5-6 years, 10 to 12 years and 20 years and older. The sprayer was optimized for each block by opening only those nozzles appropriate for tree size and furrow depth, so that no spray was delivered under or over the canopy of most trees. The same randomly selected 3.0 to 4.7 acre (1.2 to 1.9 ha) section was then sprayed in each block both with and without activation of the precision spray system. In each block, the precision spray system computer also calculated spray savings based on precision sprayer use with no operator nozzle adjustment. Mean savings in spray material from use of the precision sprayer was 6.6% of total conventional output when comparisons were made with optimal sprayer nozzling in each grove versus 18.6% with no operator adjustment of nozzles. In this study, optimizing nozzling provided a larger proportion of spray savings than use of the precision sprayer on 100% of groves 5 to 12 years old and 44% of groves greater than 20 years old. However, in 70% of groves tested, precision spray systems increased spray savings by more than 2% even when using optimal nozzling. Assignment of precision sprayers to groves with greatest potential for savings will likely provide greatest efficiency, while uniform groves forming hedgerow will offer so little potential savings that even the additional cost of weed management will probably not be recovered.