Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: E. Troyo-Dieguez x
  • Refine by Access: All x
Clear All Modify Search
Free access

A. Nieto-Garibay and E. Troyo-Dieguez

Diurnal and seasonal water relations and ecophysiological variables (soil humidity, transpiration, evapotranspiration, stomatal resistance, morphological changes, production), matched with some microclimatological variables, were studied in a hot pepper (Capsicum frutescens) experimental plot. Two treatments of plants with plastic mulches were assigned, black and blank-opaque, to compare them with plants without a mulch, established at the Experimental Station of CIBNOR in La Paz Baja California Sur, Mexico. Plants with blank-opaque plastic mulch showed the highest values of flower number, fruit production, leaf area, and canopy-projected area. Also, the biggest evapotranspiration rates were recorded from January to April for plants under the blank-opaque plastic mulch. Soil water content appeared to be a primary determinant factor for production. Soils under the blank-opaque plastic mulch had the biggest water content along the experiment. Plants without any plastic mulch had the lowest availability of soil water, rendered the lowest fruit production, and registered the highest evapotranspiration rates. May and June were the months with the highest air temperature during the experiment. Plants with black plastic mulch had intermediate records among the other two groups. When plants were allowed to face a drought stress, they responded through an osmotic adjustment for maintaining a low water potential, and thus supporting a partial turgor pressure. This adjustment was evident to be coupled with a stomatal regulation in order to minimize the loss of water through the transpiration process. Some drought tolerance strategies as a leaf size reduction were more evident in plants without a mulch.

Free access

B. Murillo-Amador, E. Troyo-Dieguez, and F. orrego-Escalante

The response of physiological traits of four genotypes of Opuntia spp (AN-V1, AN-V3, AN-V5, and AN-TV6) to organic fertilization with two levels of thickness and different plant densities (10, 20, 30, 40, and 50 plants/m2) under plastic tunnels were studied in the Universidad Autnoma Agraria “Antonio Narro” in 1995 and analyzed at CIBNOR, La Paz, Mexico. The main goal of this work was to screen Opuntia genotypes for yield and photosynthetical efficiency. The experiment was established as a randomized blocks design with three replicates. Response variables were dry weight (DW), crop growth ratio (CGR), rate of crop growth (RCG), relative growth rate (RGR), leaf area index (LAI), and net assimilation rate. The annual average temperature in the study site was 19.8°C. Hottest months were July and August, with temperature values as high as 39°C. The lowest temperatures were recorded in December and January, with temperatures as low as –13°C. Annual rainfall was 365 mm. Soils in the study region show a generalized low fertility. According to our results, genotype AN-V1 showed the best photosynthetical features with 30 plants/m2; genotype AN-TV6 showed no differences for 40 and 50 plants/m2. The highest values for CGR and RCG were observed under the highest level of organic fertilization (16-cm thickness). Genotypes AN-V3 and AN-V5 evidenced the highest RCG. Other results suggest that AN-V3 and AN-V5 showed the highest value for LAI, for a density 50 plants/m2, and genotypes AN-V1 and AN-V3, with a density 40 plants/m2, had the highest RGR. The studied Opuntia genotypes appeared to be promising crops for marginal semiarid regions.

Free access

J.A. Larrinaga-Mayoral, E. Troyo-Dieguez, M. Toyota, and B. Murillo-Amador

Salt and water stress affect in a significant way most common horticultural crops in northwest Mexico, where bell pepper, hot pepper, and tomato are the most important vegetable crops. Growth rate (GR) and physiological traits in bell pepper were analyzed under salt and drought stress. Two cultivars of bell pepper, `Hungarian Yellow' (HY) and `Sta. Fe Grande' (SG), were evaluated. GR in both cultivars was decreased by salt and drought stress interaction. Salt concentration in the irrigation water affected the amount of dry matter in the plant tissue. Relative growth ratio (RGR), net assimilation ratio (NAR), leaf area ratio (LAR), and photosynthesis rate (Pn) decreased in a correlated amount to the salt NaCl content in the experiment (0, 80, and 160 mm). Differences in the RGR under salt and drought stress between SG and HY were significant. The observed decrease in RGR was explained by NAR and LAR, where RGR was more affected by NAR than LAR. Similarly, the decrease in NAR was explained by C/F and Pn, indicating that NAR was more affected by Pn than C/F. The difference in observed NAR between both cultivars was understood by difference in C/F. Finally, a high relation of C/F in SG cultivar under salt and drought stress was caused by a physiological use of photosynthetic products, causing a significant decrease in NAR in the cultivar HY. This difference in NAR was found to be the factor that affected RGR in both cultivars.

Free access

J.L. Garcia-Hernandez, E. Troyo-Dieguez, H. Nolasco, H.G. Jones, and A. Ortega-Rubio

The phytotoxic effects on the physiology of chili (Capsicum annum L. cv. Ancho San Luis) caused by four different insecticides were evaluated. Three commercial mixes (methyl azinfos, methyl parathion CE720, and metamidophos 600 LM), and an active ingredient alone (methamidophos) were assayed; water was used as the control. The main goal was to evaluate the insecticide effects on chili using four different doses; the mean dose, recommended on the label of the product (R), a half one (1/2R), 1.5 times (1.5R) and twice the recommended dose (2R). Three frequencies of application were applied; once a week, twice a week, and once every other week, for 6 weeks from the beginning of flowering. Phytotoxicity was evaluated measuring the response of some physiological traits, Chlorophyll Fluorescence (CF), Leaf Temperature (LT), Transpiration (Tr), and Stomatal Resistance (SR). CF was measured by means of a portable chorophyll fluorscence meter; LT, Tr, and SR were measured using a LI-Cor Porometer. The doses and frequencies used are all common in commercial chili fields in Mexico. Results showed that phytotoxicity caused by insecticides can be an important damage factor to the plants, something that can cause reduction of yields. CF was shown to be the most sensitive variable to evaluate the phytotoxicity caused by insecticides. Fruit malformation was observed in all treatments. Chlorophyll content was reduced up to 25%, on average. The phosphorate insecticides affected the physiological parameters more drastically than the others. Results evidence the irreversible crop damage caused by excessive insecticide applications.