Search Results
Advancements in telecommunications technology have impacted society in many ways. Much discussion exists about redefining the role of colleges and universities. The progress being made in educational methods is changing conventional classroom teaching. While change may be necessary for institutions of learning to compete in a global marketplace, colleges and universities remain highly focused on what their role will be in improving educational quality. A review of available literature reveals that many factors have created alternative ways for educators to be effective in providing course material to students. The effects of modern technology will present new challenges and innovations in the way horticultural education will be presented.
In 2011, total marketable yield, fruit size, and number of lobes; fruit discoloration due to silvering; and plant structure were compared among eight commercial green bell pepper (Capsicum annuum) varieties and four breeding lines at three field sites in central New York. Tolerance to phytophthora blight (Phytophthora capsici) was also assessed at one of these sites. No wilting or plant death due to phytophthora blight was observed on the four breeding lines. ‘Paladin’, ‘Intruder’, and ‘Aristotle’ had the highest levels of tolerance to phytophthora blight, among the commercial varieties and maintained their yields in the presence of disease. In the absence of phytophthora blight, yields from these three varieties were comparable to susceptible varieties, but fruit tended to be smaller, and incidence of silvering was high in ‘Paladin’ and ‘Intruder’. Less silvering was observed on ‘Aristotle’ fruit. Total marketable yields from the breeding lines and percent of fruit with four lobes was comparable to the commercial varieties, and some breeding lines also had a low incidence of silvering, but fruit were smaller and set later in the season. Overall, this study suggests that ‘Paladin’, ‘Intruder’, and ‘Aristotle’ will yield well in fields with a history of severe phytophthora blight, but new large-fruited varieties with low incidence of silvering and good tolerance to phytophthora blight are needed.
Phytophthora capsici is an oomycete pathogen that causes disease on bell pepper (Capsicum annuum) and many other vegetable crops globally. Newly developed bell pepper inbred lines have been shown to be resistant to P. capsici and have been previously evaluated for green harvest yield. Nine P. capsici-resistant inbred lines and three commercial cultivars were evaluated for red harvest yield and fruit characteristics at three sites and disease resistance was evaluated through field inoculation studies. Three of the P. capsici-resistant lines were further evaluated as hybrid parents by measuring hybrid yield and disease resistance. P. capsici-resistant lines had excellent disease resistance and provided high levels of resistance to F1 hybrids. Inbred lines had comparable yields to the commercial cultivars, but fruit were smaller in size and weight. These lines are suitable for use as inbred lines for markets where small fruit size is acceptable and have potential for use as hybrid parents.