Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: E. Ng x
  • All content x
Clear All Modify Search
Free access

D.D. Treadwell, D.E. McKinney, and N.G. Creamer

Free access

N.G. Creamer, M.A. Bennett, J. Cardina, and E.E. Regnier

Little research has been conducted to quantify allelopathic suppression of weeds in the field. The objectives of this study were to develop an adequate control for separating physical from allelochemical effects, use the control to quantify allelochemical suppression in the field, and determine whether a mixture of cover crops would provide a broader spectrum of weed control than single species. Hairy vetch, rye, crimson clover, and barley were cut into 5-cm pieces, shaken in distilled water (pH 6) to leach allelochemicals, and redried. A seed germination bioassay confirmed that leached cover crops were nontoxic to germinating seeds. Physical suppression of Eastern black nightshade by the four cover crop species occurred in the field study, as did allelochemical suppression by crimson clover. Only rye physically suppressed yellow foxtail, and none of the cover crops suppressed yellow foxtail allelochemically.

Free access

N.G. Beck, M.L. Arpaia, J.S. Reints Jr., and E.M. Lord

Deformations consisting of longitudinal ridges in the rind of Citrus fruits have recently been found in Southern California Citrus groves. Here, we report the correlation between ridge formation and applications of chlorpyrifos (Lorsban, Dow Chemical Company, Midland, MI) during the feather-growth stage of bud break. All chlorpyrifos formulations resulted in significant ridging. Addition of agricultural oil and 2,4-D (2,4-dichlorophenoxyacetic acid (2,4-D) to chlorpyrifos resulted in the greatest ridging damage and widened the window of susceptibility by 2 weeks in 1988. In 1989, no significant difference was seen between treatments of chlorpyrifos, although all were significantly greater than the control. The susceptible stages of bud growth are described, as are the non-susceptible stages which precede and follow it. Floral buds in which carpels are initiating are susceptible to fruit ridging upon application with chlorpyrifos. These ridges are the result of an increase in cell size of the flavedo tissue which may be the result of a polyploid chimera.

Free access

A.J. Daymond, P. Hadley, R.C.R. Machado, and E. Ng

Biomass partitioning of cacao (Theobroma cacao L.) was studied in seven clones and five hybrids in a replicated experiment in Bahia, Brazil. Over an 18-month period, a 7-fold difference in dry bean yield was demonstrated between genotypes, ranging from the equivalent of 200 to 1389 kg·ha-1. During the same interval, the increase in trunk cross-sectional area ranged from 11.1 cm2 for clone EEG-29 to 27.6 cm2 for hybrid PA-150 × MA-15. Yield efficiency increment (the ratio of cumulative yield to the increase in trunk circumference), which indicated partitioning between the vegetative and reproductive components, ranged from 0.008 kg·cm-2 for clone CP-82 to 0.08 kg·cm-2 for clone EEG-29. An examination of biomass partitioning within the pod of the seven clones revealed that the beans accounted for between 32.0% (CP-82) and 44.5% (ICS-9) of the pod biomass. The study demonstrated the potential for yield improvement in cacao by selectively breeding for more efficient partitioning to the yield component.

Full access

J.P. Mueller, M. E. Barbercheck, M. Bell, C. Brownie, N.G. Creamer, A. Hitt, S. Hu, L. King, H.M. Linker, F.J. Louws, S. Marlow, M. Marra, C.W. Raczkowski, D.J. Susko, and M.G. Wagger

The Center for Environmental Farming Systems (CEFS) is dedicated to farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Department of Agriculture and Consumer Services (NCDACS) Cherry Farm near Goldsboro, N.C.; CEFS operations extend over a land area of about 800 ha (2000 acres) [400 ha (1000 acres) cleared]. This unique center is a partnership among North Carolina State University (NCSU), North Carolina Agriculture and Technical State University (NCATSU), NCDACS, nongovernmental organizations (NGOs), other state and federal agencies, farmers and citizens. Long-term approaches that integrate the broad range of factors involved in agricultural systems are the focus of the Farming Systems Research Unit. The goal is to provide the empirical framework to address landscape-scale issues that impact long-run sustainability of North Carolina's agriculture. To this end, data collection and analyses include soil parameters (biological, chemical, physical), pests and predators (weeds, insects and disease), crop factors (growth, yield, and quality), economic factors, and energy issues. Five systems are being compared: a successional ecosystem, a plantation forestry-woodlot, an integrated crop-animal production system, an organic production system, and a cash-grain [best management practice (BMP)] cropping system. An interdisciplinary team of scientistsfrom the College of Agriculture and Life Sciences at NCSU and NCATSU, along with individuals from the NCDACS, NGO representatives, and farmers are collaborating in this endeavor. Experimental design and protocol are discussed, in addition to challenges and opportunities in designing and implementing long-term farming systems trials.