Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: E. Gordon Kruse x
  • Refine by Access: All x
Clear All Modify Search
Free access

E. Gordon Kruse, James E. Ells, and Ann E. McSay

A 3-year irrigation scheduling study on carrots (Daucus carota L.) was conducted at the Colorado State Univ. Horticulture Research Center near Fort Collins to determine the irrigation schedule that produced the best combination of high water use efficiency and marketable yields with the least amount of water and fewest irrigations. This study used an irrigation scheduling program developed by the U.S. Department of Agriculture/Agricultural Research Service with crop coefficients calculated for carrots. Maximum carrot production and water use efficiency were obtained when the scheduling program simulated a 30-cm rooting depth at planting, increasing linearly to 60 cm in 75 days. Best yields and water use efficiency were attained by irrigating whenever 40% of the available water in the root zone had been depleted. The computer program for irrigation scheduling is available on diskette from the authors.

Free access

James E. Ells, E. Gordon Kruse, and Ann E. McSay

An irrigation scheduling program has been developed for zucchini squash that produced high yields and high water use efficiency with, a minimum number of irrigations. The irrigation program is based upon a soil water balance model developed by the USDA. This irrigation program is available in diskette form and may be used with any IBM compatible personal computer provided wind run, temperature, solar radiation, humidity and precipitation data are available.

Free access

James E. Ells, E. Gordon Kruse, and Ann E. McSay

Roots of acorn squash were washed from soil cores, dried and weighed. The cores were taken in a pattern about individual plants to reflect the roots present in each selected zone at different periods during the season. A different plant was sampled at each period so that there would be no effect from previous sampling. The root weights were multiplied by factors commensurate with the volume of soil represented by each core sample. Two years data have indicated that irrigation level effects the size of the root system but not its distribution. Density of roots was always greatest in the top 15 cm of soil and this zone of the greatest density progressively moved out from the center of the plant with time. Pattern of root distribution was not effected by plastic mulch, bare ground, trickle or furrow irrigation treatments. Root distribution was the same on all sides of the plant.

Full access

James E. Ells, Ann E. McSay, E. Gordon Kruse, and Gregory Larson

Squash (Cucurbita pepo L. var. pepo) plants were grown on black polyethylene mulch or on bare ground, with trickle or furrow irrigation, and received only natural rainfall, or natural rainfall plus half or all of the estimated supplemental irrigation water required as determined by an irrigation scheduling program. The squash roots predominate in the upper 6 inches of soil throughout the season, with no less than 60% of the root mass located in this layer. The proliferation of roots increased as they extended horizontally from the vertical center line of the plant from 0 to 24 inches. Neither the irrigation treatments nor black polyethylene mulch had any influence on the pattern of root development. Water stress, however, reduced the size of the root system and the crop yield. Yields were not influenced by either furrow or trickle irrigation on the short rows that were used in this study. However, black polyethylene mulch and full irrigation offered the best chance of maximizing squash yields under the conditions of this study.