Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: E. E. Carey x
Clear All Modify Search
Authors: and

High tunnels, unheated greenhouses, have been shown to be a profitable season-extending production tool for many horticultural crops. Production of cool-season vegetables during hot summer months can be achieved using shaded high tunnels. Microclimate in high tunnels and open field was monitored during summer trials of leaf lettuce, in which unshaded tunnels and shaded tunnels (39% PAK white shadecloth) were used, respectively, in 2002 and 2003. Wind speed was consistently lower in high tunnels. Compared to open field, daily air temperature was about 0.7 °C higher in unshaded high tunnels, and 0.5 °C lower in shaded high tunnels. Relative humidity was slightly lower in unshaded tunnels, but tended to increase in shaded tunnels, in comparison to the open field. When using shadecloth, soil temperature was lowered by 1∼3 °C and the leaf surface temperature was significantly reduced by 1.5∼2.5 °C. In shaded high tunnels, PAR light dropped by at least 50% relative to the outside, where the maximum PAR light intensity reached 1800 μmol·m-2·s-1. Overall, shaded high tunnels resulted in higher quality lettuce, with less bolting and bitterness. Reference crop evapotranspiration (ET0) was estimated from meteorological data on a daily basis using the FAO-56 method. ET0 was lowest in shaded high tunnels, and highest in the open field. Relatively lower ET0 in high tunnels indicated a likely lower water requirement and therefore improved water use efficiency compared with the open field.

Free access
Authors: and

High tunnels have been shown to be a profitable season-extending production tool for many horticultural crops. Production of cool-season vegetables during the hot summer months represents a challenge to market growers in the midwestern United States. Two experiments were conducted to investigate the microclimate and production of eight leaf lettuce (Lactuca sativa) cultivars in high tunnels and open fields, using unshaded and shaded (39% white shadecloth) tunnels in Summer 2002 and 2003, respectively. Wind speed was consistently lower in high tunnels with the sidewalls and endwalls open. An unshaded high tunnel resulted in an increase of daily maximum and minimum air temperatures by ≈0.2 and 0.3 °C, respectively, in comparison with the open field. In contrast, daily maximum air temperature in a shaded high tunnel decreased by 0.4 °C, while the daily minimum air temperature was higher than that in the open field by 0.5 °C. Using high tunnels did not cause a marked change in relative humidity compared with the open field. When using shadecloth, the daily maximum soil temperature was lowered by ≈3.4 °C and the leaf surface temperature was reduced by 1.5 to 2.5 °C. The performance of lettuce during summer trials varied significantly among cultivars. Unshaded high tunnels generally led to more rapid bolting and increased bitterness of lettuce compared with the open field. Lettuce grown in high tunnels covered by shadecloth had a lower bolting rate, but decreased yield relative to the open field. Based on our results, summer lettuce production would not be recommended in high tunnels or open fields in northeastern Kansas, although the potential of shaded high tunnels deserves further studies. Reference crop evapotranspiration (ET0) was estimated from meteorological data on a daily basis using the FAO-56 method. The ET0 was lowest in the shaded high tunnel and was the highest in the open field. Relatively lower ET0 in high tunnels indicated a likely lower water requirement and therefore improved water use efficiency compared with the open field.

Free access

The species of section Batatas represent the primary potential source of wild germplasm for sweet potato breeding. Their wide distribution and adaptation make their use desirable, but their direct use is constrained by their ploidy level (2x, and 4x, in contrast with cultivated I. batatas which is 6x) and lack of storage root production.

We investigated 4x clones of interspecific origin (6x I. batatas 2x I. trifida) as bridges to introgress genes from several wild species of the section Batatas to I. batatas. Six 2x wild species from different origins were reciprocally crossed to the 4x clones. The crosses were successful only when the diploid wild species were used as females (2x × 4x) indicating unilateral interspecific incompatibility. The unsuccessful types of crosses (4x × 2x) were repeated using wild hybrid males containing I. trifida in their parentage. This time only those crosses involving a hybrid having I. trifida as its female parent produced seeds. Progenies from the successful 2x × 4x crosses were diploid instead of the expected triploid. Triploid progenies were obtained only in the 4x × (2x hybrid) crosses. Some triploid progenies produced 2n pollen in varying frequencies. These results show different levels of crossing barriers among Ipomoea species and give us alternative pathways for overcoming them. I. trifida was identified as a possible bridge species.

Free access

Abstract

Eleven maize inbreds homozygous for genes sugary (su) and sugary enhancer (se) were developed as a consequence of studies to characterize the effect of se with su on car bohydrates in the kernels (2, 3, 4). These inbreds should provide useful germplasm for the development of sweet com hybrids with superior culinary quality.

Open Access

Abstract

Five sugary enhancer (su se) inbreds were compared with 2 sugary (su Se) inbreds of maize (Zea mays L.) for postharvest changes in sugars and sorbitol. The level of sucrose, the predominant sugar, was 17 to 26% of dry weight for the su se inbreds, and 8 and 9% for the su Se inbreds at the time of harvest. The su se inbreds lost about the same proportion of their sucrose as the su Se inbreds during 48 hours storage at 30°C, but storage at 2° slowed or prevented the loss in both genotypes. The sucrose content of su se inbreds after 48 hours storage at 30° was still greater than that of freshly harvested su Se inbreds. For the other sugars and sorbitol, the effect of the se gene was minimal during storage. In general for both genotypes, fructose decreased and maltose increased during either storage condition. Sorbitol decreased during cool storage and increased during warm storage.

Open Access

An experiment was conducted at Olathe, Kan., in Spring 2004 to investigate the influence of organic and conventional fertilizer sources and application rates on antioxidant levels of pac choi (Brassica rapa L. cv. Mei Qing) in open fields and poly-covered high-tunnel plots. Organic plots received pre-plant application of composted cattle manure and alfalfa (Hu-More 1–1–1) at 0 kg/ha N, 156 kg/ha N, or 314 kg/ha N, and conventional plots received preplant application of 13N–13P–13K at 0 kg/ha N, 78 kg/ha N, or 156 kg/ha N. Antioxidant levels were measured using the oxygen radical absorbance capacity (ORAC) assay. There were significant effects of fertilizer source and high-tunnel environment on the antioxidant capacity of pac choi. Organic fertilization significantly increased hydrophilic ORAC of pac choi in open field plots, but not in high tunnels. Regardless of the fertilizer source, pac choi grown in the open field had significantly higher hydrophilic ORAC than that grown in tunnels. Lipophilic ORAC was significantly increased by organic fertilization but was not affected by high-tunnel production. Total ORAC (hydrophilic + lipophilic) was significantly higher in pac choi from organic or open-field plots, compared to conventional and high-tunnel plots, respectively. Although fertilizer rate did not show significant impact on antioxidant level of pac choi, hydrophilic and total ORAC seemed to decrease as the fertilizer rate increased, especially under conventional fertilization, while lipophilic ORAC reached the highest level at the medium fertilizer rate. Differences in antioxidant levels were likely associated with the enhanced phytochemical content of pac choi from organically fertilized and open-field plots.

Free access

Compost teas, made using an aerated brewing process, have been reported to have potential for controlling a range of plant diseases and improving crop health. Septoria leaf spot of tomato, caused by the fungus Septoria lycopersici, is a common and destructive disease of tomato in Kansas. A field trial was conducted at Wichita, Kansas during Summer 2003 to evaluate the potential of pre-plant compost, and compost tea applied as a foliar spray or through drip fertigation, to control Septoria leaf spot of tomato. The experimental design included three factors: Pre-plant application of 13N-13P-13K or vermicompost; fertigation with CaNO3 or compost tea; and foliar spray with compost tea, fungicide (Dithane) or water. A split plot design was used with fertigation treatments as main plots and the other two factors as sub-plots. There were 3 replications. Tomato cultivar Merced was used and individual plots consisted of 5 plants grown on beds covered with red plastic mulch and supported by stake and weave system. Aerated compost tea was brewed weekly using a vermicompost-based recipe including alfalfa pellets, molasses, humic acid, fish emulsion and yucca extract and applied to plots starting 2 weeks after transplanting. Disease incidence and severity were recorded weekly for 3 weeks following the appearance of disease. Plots were harvested twice weekly and counts of No. 1, No 2 and cull grade tomatoes were recorded. There were no effects of pre-plant or fertigation treatments on Septoria leaf spot disease, but there was a significant effect due to foliar sprays, with mean severity of compost-tea-sprayed plots (26.3%) and fungicide-sprayed plots (31.9%) significantly lower than water-sprayed plots (45.9%) at trial termination.

Free access

Organic vegetables have been suggested to produce higher levels of phytochmemicals, which play active roles in disease prevention. We measured total phenolic and aglycone flavonoid (apigenin, kaempferol, luteolin, and quercetin) contents in leaves of organically- and conventionally-grown lettuce (`Kalura' and `Red Sails'), collards (`Top Bunch') and Pak Choi (`Mei Qing') greens during spring and summer trials, using the Folin assay and HPLC, respectively. Postharvest changes in phenolic contents of organic and conventional lettuce were also investigated after 17-day storage at 4 °C. Production system did not cause a significant difference in total phenolic levels of lettuce and collards in either trial, but total phenolics were significantly higher in organic Pak Choi in the summer trial, possibly due to greater flea beetle damage in the organic plots. Organic production did not affect the aglycone flavonoid levels of lettuce and collards in the spring trial except that apigenin increased in organic samples. In the summer trial, however, concentrations of kaempferol, luteolin and quercetin tended to increase in organic lettuce and collards; only luteolin showed promising increase in Pak Choi. Species and cultivars both had significant effects on total phenolic and flavonoid contents. After 17-day storage, total phenolic content significantly increased in both organic and conventional lettuce although the concentrations of aglycone flavonoids remained relatively constant. Total phenolic content was higher in organic `Red Sails' at a marginal significance level after storage, while it did not differ between organic and conventional `Kalura'. We noted a dominant presence of glycoside flavonoids in lettuce before and after storage, which warrants further study.

Free access

Consumers of organic food tend to believe that it tastes better than its conventional counterpart. However, there is a lack of scientific studies on sensory analysis of organic food. A consumer taste test was conducted to compare the acceptability of organically and conventionally grown spinach. Spinach samples were collected from organically and conventionally managed plots at the Kansas State University Research and Extension Center, Olathe. One hundred-twenty-two untrained panelists (80 female and 42 male) participated in this consumer study. Fresh and 1-week-old spinach leaves were evaluated by 60 and 62 consumers, respectively, using a 9-point hedonic scale (9 = like extremely, 5 = neither like nor dislike, 1 = dislike extremely). The ANOVA results showed that fresh organic spinach had a higher preference score than corresponding conventional spinach, although not at a significant level (P = 0.1790). For the 1-week-old spinach, the difference diminished, and instead, conventional spinach had a higher preference rating. Among 61 consumers who made comments regarding the sensory evaluation, 29 claimed that organic spinach was more tasty and flavorful; 19 consumers thought conventional spinach was better; 13 consumers could not tell the difference. Even though this consumer study did not reveal significant differences in consumer preference for organic vs. conventional spinach, further well-designed sensory tests are warranted given the trends indicated in our study. Assessment of sensory attributes of organic vegetables after storage also deserves further attention. Ideally, both consumer tests and descriptive analysis using trained panelists will be considered.

Free access

Microbial tea from a commercial source and a homemade manure tea were evaluated for 2 years under organic and conventional fertility regimens. Testing with different fertility regimens allowed broader assessment of tea efficacy. Collard green (Brassica oleracea L. var. acephala cv. Top Bunch) yield and soil microbial activity were measured after microbial tea applications were made in three fertility treatments (conventional, organic, or no fertilizer amendment) on a previously unfertilized sandy loam soil. Spinach (Spinacia oleracea L. cv. Hellcat) and collard green yields were determined after commercial microbial tea application to a silt loam soil previously managed with organic or conventional vegetable crops in open fields and under high tunnels. Results indicated that nutrient additions influenced crop yields, even doubling yield. This demonstrated that improved nutrient availability would affect yield at the chosen locations. However, microbial tea applications did not affect crop yield. These results did not support the hypothesis that microbial tea improves plant nutrient uptake. Additionally, soil microbial respiration and biomass were unaffected after two or three tea applications.

Free access