Search Results
You are looking at 1 - 10 of 53 items for
- Author or Editor: Douglas D. Archbold x
Following June drop, apple fruit growth depends on sorbitol import as the primary source of carbon. Sorbitol dehydrogenase plays a key role in carbohydrate metabolism by conversion of sorbitol to fructose, which then enters the general carbohydrate pool. Blocking the pathway and eliminating the source of sorbitol to the fruit by girdling the stem and defoliation after June drop resulted in a decline and eventual cessation of fruit growth. The fruit did not abscise however. Fruit sorbitol and starch levels declined while the fructose, glucose, and sucrose pools did not change. SDH activity declined to low levels and was not detectable in many fruit. The decline in SDH activity was evident 1 week after applying the treatments. A few fruit that resumed growth, presumably after the vascular connection was re-established across the girdle, exhibited normal SDH activity. Feeding sorbitol to whole fruit in vitro via the cut stem raised SDH activity in some fruit, although it was still below control levels.
Plants of a diverse collection of Fragaria clones from a range of native habitats representing F. chiloensis, F. virginiana, F. virginiana glauca, and F. vesca, were grown in a controlled environment at one of three day/night temperatures, 15/15, 23/15, or 31/15°C. Relative growth rate (RGR) and net assimilation rate (NAR) were estimated from plant leaf areas and total dry weights. At 23/15°C, the species mean RGR and NAR values were comparable although clones within species exhibited significant variation. At 15/15 and 31/15°C, RGR and NAR for species were lower than at 23/15°C. At 31/15°C, chiloensis and vesca mean values were reduced more than the others, to less than 50% the 23/15°C values. Also, NAR declined most for chiloensis, to 45% the 23/15°C value. At 15/15°C, virginiana had much higher RGR and NAR values than the other species, and its NAR mean value was greater than at 23/15°C. Although the species means would suggest that there are interspecific differences in temperature response, intraspecific variability was also large. Thus, classifying Fragaria species by temperature response may be an over-generalization.
Abstract
Strawberry (Fragaria × ananassa Duch. cv. Tristar) fruit explants and tissue disks were used for short term in vitro studies of [14C] sucrose import. An aqueous feeding solution of 50 mm Mes, 10 mm CaCl2, 10 mm EDTA, and 600 mm [14C] sucrose at pH 5.5 resulted in maximum accumulation of sucrose by fruit expiants during 2 hr. Young fruit exhibit the highest sink activity (sucrose imported per mg fruit dry weight), a value that declined as fruit aged. Sink strength (total sucrose accumulated per fruit) was positively correlated to fruit dry weight at 13 to 15 days after pollination. Inclusion of abscisic acid (ABA) in the incubation solution of fruit expiants and cortex disks increased sucrose accumulation 45% and 37%, respectively, above control values.
Over 4 years, using estimates of fruit dry weight derived from diameter measurements in situ, cultivar variation in apple fruit relative growth rate (RGR) in the period following June drop was evident. These differences diminished as the season progressed however. Using estimates of dry weight per cell, fruit cell absolute growth rate increased over time and RGR showed no clear pattern in contrast to the RGR of whole fruit. There were no cultivar differences in carbohydrate allocation among the soluble, starch, and remaining ethanol-insoluble, non-hydrolyzable pools irrespective of cultivar RGR. The storage carbohydrate pool comprised an increasing fraction of the total dry weight over time with the starch pool comprising 10 to 25% of the storage carbohydrate, varying with season and cultivar. Neither fruit competition within a cluster nor post-June drop thinning altered fruit RGR or carbohydrate allocation patterns when compared to fruit thinned post-bloom.
Maintenance of positive cell turgor is an essential factor in cell, and fruit, expansion. Since apple fruit partition carbohydrates between the starch and soluble pools to maintain turgor, variation among cultivars in this osmoregulatory aspect may play an important role in defining cultivar-specific fruit growth rates. Cultivar-specific apple fruit growth rates were determined over a 6 week period following June drop during 2 seasons. Fruit water relations parameters and carbohydrate levels were also measured. Although cultivar differences were evident, generally, fruit absolute growth rate increased, relative growth rate (RGR) declined, water potential and osmotic potential declined, and turgor potential increased as the season progressed. Soluble carbohydrate levels increased over 6 weeks, while starch levels fluctuated. Soluble carbohydrates contributed 50 to 90% of the osmotic potential. RGR was not correlated to either turgor potential or the relative allocation of carbohydrates between the soluble and starch pools. Thus, although positive turgor was maintained, factors other than turgor per se determine fruit growth rate.
Absolute and relative fruit growth rates (AGR and RGR) of apple (Malus domestics Borkh.) were calculated from the fruit dry weights of several cultivars harvested periodically following June drop during 1988-90. AGRs were constant or varied slightly, and RGRs generally declined as the season progressed. Generally, both AGR and RGR values were higher for relatively large fruit of several cultivars with similar days to maturity, e.g., `McIntosh' vs. `Jonathan' and for summervs. fall-ripening cultivars, e.g., `Stayman' vs. others. An exception was observed in 1990, when `Golden Delicious' exhibited a higher AGR but lower RGR than `Rome Beauty', yet ripened 1 month earlier. `Golden Delicious' AGR and RGR values were lower for both fruit of a pair on a spur than the values for a single fruit on a spur, and the dominant fruit of the pair exhibited higher growth rates than the inferior fruit. Rates of sorbitol accumulation (SAR) by cortex disks incubated in 14C-labeled sorbitol solutions in vitro declined as the season progressed. Within a cultivar, SARS were not related to fruit size, nor were differences found between cortex disks from competing fruit on a spur, although SARS were higher for both competing fruit on a spur as compared to that of a single fruit per spur. Due to a positive correlation between RGR and SAR values, the SAR of cortex cells may be regulated in such a manner as to be a physiological constraint on fruit sink strength and growth rate.
Modified atmosphere (MA) storage of blackberries may maintain quality and increase storage life, but there is limited information about how eastern thornless cultivars respond to MA's. Because there is also a growing interest in the health benefits of antioxidants in blackberries, it would be useful to know how those levels might change during MA storage. In 2002, the eastern thornless blackberry variety Chester was stored in MA; treatments included a control, or initial levels of 20% CO2 or 5% O2. Color, pH, firmness, fresh weight, soluble sugars, titratable acidity, total antioxidant capacity, and the levels of major classes of compounds with antioxidant activity of the fruit were measured at harvest, after 1 week of MA storage at 4 °C, and after 3 additional days at room temperature to simulate common industry practices and grocery display. Total antioxidant capacity was measured using the FRAP (ferric reducing/antioxidant power) assay, and total phenolics and anthocyanins were measured spectrophotometrically. In 2002, soluble sugar levels, fresh weight, titratable acidity, and all classes of antioxidants decreased from day 0 to day 7 to day 10 while the pH increased. Color values did not change. The only trait that differed among treatments was berry firmness; from day 0 to day 7 control fruit was the most firm, and those from the high CO2 treatment were the least firm. Studies were continued in 2003 with the addition of two more eastern thornless blackberry cultivars, Hull Thornless and Triple Crown, and these results will also be presented.
To determine if apple cultivars vary in their response to aminoethoxyvinylglycine (AVG) and heat treatment, alone or combined, postharvest ripening traits and storability of treated Lodi, Senshu, Red Delicious and Fuji have been studied. An aqueous solution of AVG was applied 4 weeks before harvest of each cultivar at 124 g·ha-1 a.i. Control and AVG-treated fruit were heated at 38 °C for 4 days. Fruit were ripened at ambient temperature immediately harvest and treatment, or after storage at 4 °C for 30 days. AVG reduced firmness loss in all but Fuji apples immediately after harvest, and that effect was maintained in Senshu and Red Delicious apples after 30 days in cold storage. All AVG-treated fruit showed a reduction in respiration rate and ethylene production immediately after harvest as well as after removal from cold storage. Heat treatment alone prevented firmness loss in Senshu and Red Delicious cultivars, and slightly reduced respiration rate of Lodi and Senshu apples. Ethylene production was clearly lower in heated compared to non-heated fruit in Senshu, Red Delicious and Fuji. After cold storage, AVG and heat treatments combined decreased flesh firmness loss of Lodi apples, reduced respiration in Lodi and Fuji apples, and highly repressed ethylene production of Red Delicious and Fuji fruit. Overall, AVG seemed to have a stronger effect on the measured ripening traits, and its combination with heat treatment improved fruit quality of cold-stored Lodi apples and reduced ethylene production the most for all but Lodi.
Several components of whole-plant growth were compared among accessions of Fragaria chiloensis (FC) and F. virginiana (FV) grown at 23 and 31 °C daytime temperatures. The accessions loosely represented North American (NA) and South American (SA) provenances of FC and Kentucky (KY) and eastern Canadian (CN) provenances of FV. Differences in component values between species and by provenance and accession within species were observed at each temperature. Using the ratio of the component value at 31 °C to that at 23 °C as a basis for comparisons, whole-plant relative growth rate (RGR), leaf net assimilation rate (NAR), root RGR, and root: shoot ratio were reduced relatively more by high temperature in FC than FV, while crown RGR, leaf RGR, and leaves produced per day were not consistently affected by temperature or and did not differed significantly between species. While the SA FC exhibited higher values for nearly all components than the NA FC at both temperatures, both were affected similarly by high temperature. The CN FV exhibited somewhat greater sensitivity to high temperature than the KY FV, with significantly lower leaf NAR, crown RGR, and leaves produced per day in the former group.