Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Dorm G. Shilling x
Clear All Modify Search
Free access

Dorm G. Shilling, Joan A. Dusky, Mark A. Mossier and Thomas A. Bewick

Poor emergence of commercially grown lettuce has been observed when planted immediately after the removal of a celery crop. Greenhouse experiments were conducted to evaluate the possible allelopathic effects of celery residue on the emergence and growth of lettuce. The influence of amount and type of celery tissue, growth medium and fertility, incubation time in soil, and amendment of growth medium containing celery residue with activated charcoal was evaluated with respect to the allelopathic potential of celery. Celery root tissue was 1.8 and 1.6 times more toxic to lettuce seedling growth than was celery petiole or lamina tissue, respectively. Lettuce shoot growth was inhibited to a greater extent when grown in sand amended with celery residue rather than either amended vermiculite or potting soil. Incubation of celery root residue in soil for 4 weeks increased phytotoxicity at 1% (v/v) and decreased it at 4% (v/v). Increasing the fertility of pure sand with varying amounts of Hoagland's solution did not reverse the allelopathic effects of celery residue. The addition of activated carbon to the medium increased the growth of lettuce exposed to celery residues. Celery residues possess allelopathic potential to developing lettuce seedlings. Celery tissue type and concentration, soil type, incubation of celery root residue in soil, and addition of activated carbon to the growing medium influenced the magnitude of the observed phytotoxicity.