Search Results
Isolation of plant roots from soil or substrate for biomass measurement is time-consuming and can be a limiting factor influencing experimental designs, especially with mature woody plants. An electric-powered root separator was developed that sped sample preparation for root dry mass determination with a capacity of 40 L of container substrate or 32 kg of sandy soil. No water was required for machine operation and an estimated fourfold reduction in total processing time was achieved. Extent of root recovery was quantified by processing five woody plant species grown in two different container substrates and in soil, resulting in a minimum yield of 98%.
15Nitrogen uptake, allocation, and leaching losses from soil were quantified during spring, for 4-year-old bearing `Redblush' grapefruit (Citrus × paradisi Macf.) trees on rootstocks that impart contrasting growth rates. Nine trees on either the fast-growing `Volkamer' lemon (VL) (C. volkameriana Ten & Pasq.) or nine on the slower-growing sour orange (SO) (C. aurantium L.) rootstocks were established in drainage lysimeters filled with Candler fine sand and fertilized with 30 split applications of N, totaling 76, 140, or 336 g·year-1 per tree. A single application of double-labeled ammonium nitrate (15NH 15 4NO3, 20% enriched) was applied at each rate to replicate trees, in late April. Leaves, fibrous roots, soil, and leachates were intensively sampled from each treatment over the next 29 days, to determine the fate of the 15NH 15 4NO3 application. Newly developing spring leaves and fruit formed dominant competitive sinks for 15N, accounting for between 40% and 70% of the total 15N taken up by the various treatments. Large fruit loads intercepted up to 20% of this 15N, at the expense of spring flush development, to the detriment of overall tree N status in low-N trees. Nitrogen supply at less than the currently recommended yearly rate of 380 g/tree exceeded the requirements of 4-year-old grapefruit trees on SO rootstock; however, larger trees on VL rootstock took up the majority of 15N from this rate over the 29-day period. Nitrogen-use efficiency declined with increasing N rate, irrespective of rootstock. The residual amounts of 15N remaining in the soil profile under SO trees after this time represented a significant N leaching potential from these sandy soils. Therefore, under these conditions, present N recommendations appear adequate for rootstocks that impart relatively fast growth rates to Citrus trees, but seem excessive for trees on slower-growing rootstock species.
Diploid zonal geraniums (Pelargonium ×hortorum) are able to resist attack by small arthropod pests such as the two-spotted spider mite (Tetranychus urticae Koch) when exudate produced by tall glandular trichomes contains a high percentage of ω5-unsaturated anacardic acids. Trichomes of susceptible plants exude primarily saturated anacardic acids. Inbred mite-resistant and -susceptible geraniums were reciprocally crossed and the F1, F2, and backcross generations were examined for anacardic acid composition and trichome density. Selected F2 plants were bioassayed for resistance to two-spotted spider mites. High concentrations of ω5-unsaturated anacardic acids in resistant plants are conditioned by a single dominant allele. We propose that inheritance of tall glandular trichome density can be controlled by a small number of loci (possibly as few as one) exhibiting codominance. F2, with low densities of tall glandular trichomes and producing ω5-unsaturated anacardic acids, displayed effective resistance to two-spotted spider mites as measured by mite mortality and fecundity. A genetic model for the biosynthesis of anacardic acids is proposed.