Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Don R. La Bonte x
Clear All Modify Search
Free access

Don R. La Bonte and John A. Juvik

A single-kernel, sugar analysis technique was used to study the genetic relationship between morphological and metabolic traits previously associated with expression of the sugary enhancer (se) endosperm mutation in a su-1 sweet corn (Zea mays L.) background. Analysis of sucrose and total carotene content in su-1 kernel populations segregating for se showed that light-yellow kernel color was a reliable phenotypic indicator for kernels homozygous for the se gene. High levels of kernel maltose was not always indicative of su-1 se kernels in mature (55 days after pollination) kernel populations. Characteristic high levels of percent moisture in su-1 se kernels at 28 and 35 days post-pollination were identified as an expression of high sugar content. Kernels homozygous for su-1 se were also found to weigh less at maturity than su-1 Se kernels, and se was found to be partially expressed in a heterozygous condition.

Free access

Frank A. Buffone and Don R. La Bonte

Chlorotic Leaf Distortion (CLD) is a common disease of sweetpotato caused by Fusarium lateritium. This fungus is unique among Fusarium species in that it grows on the epidermis of leaves and shoot tips of sweetpotato. Fusarium lateritium appears as a white epiphytic material and under bright sunlight causes leaf chlorosis. When cloudy weather persists for several days, all symptoms disappear.

Researchers who use RAPD to examine banding patterns of sweetpotato DNA assume that foreign DNA present in the cTAB extract is quantitatively low and will not appreciably amplify and appear as bands. In this study we found the modified cTAB procedure used to amplify sweetpotato DNA also amplifies DNA of Fusarium lateritium cultures. DNA banding patterns of infected leaves was compared with those free of the disease. No differences in banding patterns were observed in this preliminary study.

Free access

Arthur O. Villordon and Don R. La Bonte

Our research compared the extent of genomic variability between plants originating from adventitious sprouts and nodal cultures. Plant materials, derived from a single sprout and originating from a storage root each of `Jewel,' `Sumor,' and L87-95, were clonally propagated for seven generations nodally and through adventitious sprouts. PCR-based analysis using 15 random primers identified 58 scorable molecular markers, 37 (63.79%) of which were shared by all three genotypes represented by 60 samples (10 nodal and 10 adventitiously derived plants/genotype). Of 29 putatively polymorphic markers, 24 (82.75%) were putative polymorphisms across the entire data set. The remaining four (13.79%) represented putatively fixed genotypic differences that were monomorphic within genotypes. A multidimensional scaling analysis differentiated seven (23.33%) adventitiously derived phenotypic marker variants, compared to four (13.33%) among nodal materials. Our results support previous findings that, relative to nonmeristematic tissues, meristematic regions strictly control cell division and DNA synthesis that exclude DNA duplication and other irregularities.

Free access

Frank A. Buffone, Don R. La Bonte and Christopher A. Clark

DNA isolated from Fusarium lateritium Nees: Fr.-infected `Jewel' sweetpotato [Ipomoea batatas (L.) Lam.] plants was compared to F. lateritium-free `Jewel' plants for differences in random amplified polymorphic DNA (RAPD) marker products. Differences in RAPD marker products were detected. Amplified DNA isolations from F. lateritium-infected `Jewel' plants generated additional, unique DNA fragments not found in amplified DNA isolations of F. lateritium-free `Jewel' plants. These unique amplified DNA fragments were consistent with those obtained from amplified DNA isolations of the F. lateritium isolate, 91-27-2, used for inoculation. We found that F. lateritium DNA successfully competes with sweetpotato DNA in the polymerase chain reaction for priming sites in a 3: 1 ratio of sweetpotato DNA to F. lateritium DNA. Our results indicate the importance of avoiding plant material infested with pathogens to avoid spurious marker bands.

Free access

Diego Fajardo, Don R. La Bonte and Robert L. Jarret

The USDA gene bank currently maintains 668 accessions of cultivated sweetpotato and 219 accessions of related Ipomoea species. Information on the genetic diversity of the collection does not exist due to funding constraints. The development of a core collection would provide a subset of accessions that represent the genetic diversity of the main collection with a minimum of repetitiveness. The small size of the core collection would facilitate the evaluation of the accessions for economically important traits. The objective of this research is to develop a core collection of Papua New Guinea sweetpotato germplasm using the Amplified Fragment Length Polymorphisms (AFLPs) marker system. This approach to quantifying genetic diversity would later serve as a model for the development of a USDA sweetpotato germplasm core collection. The germplasm choosen for this study was collected from this crop's secondary center of genetic diversity based on its potential as a source of new traits. All genotypes were fingerprinted using four primer combinations that generated 224 markers. The molecular data was then analyzed using NTSYSpc 2.0 program to determine the relatedness of the genotypes. The molecular analysis showed a homogeneous genetic constitution. The extent of diversity among accessions was correlated with the geographic origin of the plant material.

Free access

Heather L. Wallace, Don R. La Bonte and Christopher A. Clark

Virus infections and genetic mutations have been implicated in the decline of sweetpotato yield and quality. Virus-tested mericlones were derived from 12 infected clones of `Beauregard' sweetpotato by meristem-tip culture. Field studies were conducted to evaluate yield differences between the virus-tested and the virus-infected plants of each respective clone. After a 90-day growing period, the storage roots were harvested, weighed, and analyzed with a colorimeter to gauge color of skin and flesh. Yield was 7% to 130% greater in virus-tested mericlones compared to their respective virus-infected clone. Data also show these 12 virus-tested mericlones vary in yield by up to 118%. This suggests genetic differences between clones greatly affect yield. The virus-tested mericlones also show a more desirable darker-red hue for skin and flesh than the virus-infected clones. The incorporation of virus-tested material into foundation seed programs could potentially increase yield and quality with little added expense to growers, thereby netting a higher return on their crop.

Free access

Diego Fajardo, Don R. La Bonte and Robert L. Jarret

The USDA gene bank currently maintains 668 accessions of cultivated sweetpotato and 219 accessions of related Ipomoea species. Information on the genetic diversity of the collection does not exist due to funding constraints. The development of a core collection would provide a subset of accessions that represent the genetic diversity of the main collection with a minimum of repetitiveness. The small size of the core collection would facilitate the evaluation of the accessions for economically important traits. The objective of this research is to develop a core collection of Papua New Guinea sweetpotato germplasm using the Amplified Fragment Length Polymorphisms (AFLPs) marker system. This approach to quantifying genetic diversity would later serve as a model for the development of a USDA sweetpotato germplasm core collection. The germplasm choosen for this study was collected from this crop's secondary center of genetic diversity based on its potential as a source of new traits. All genotypes were fingerprinted using four primer combinations that generated 224 markers. The molecular data was then analyzed using NTSYSpc 2.0 program to determine the relatedness of the genotypes. The molecular analysis showed a homogeneous genetic constitution. The extent of diversity among accessions was correlated with the geographic origin of the plant material.

Free access

Don R. La Bonte, Howard F. Harrison and Carl E. Motsenbocker

Field experiments were conducted to assess how sweetpotato [Ipomoea batatas (L.) Lam.] clones interfere with weeds and how clones tolerate weed interference. Eleven clones with architecturally different canopies were evaluated for yield, canopy surface area and dry mass, weed dry mass, and light interception at ground level. A 2-fold difference in ground area covered by canopy surface area was observed among the eleven clones 42 days after planting, and a 3-fold difference in canopy dry mass at harvest. Yields were reduced from 14% to 68% by weed interference. The yields of high-yielding clones, `Beauregard', `Excel', L87-125, `Regal', `Centennial', and W-274, were reduced to a significantly greater extent by weeds than were yields of the other five clones. No differences were observed between clones for weed suppression as measured by weed dry mass at harvest and ground light interception. Short-internode and long-internode clones had similar competitive abilities. Yield of high-yielding clones was impacted more by weed interference than was that of low-yielding clones.

Free access

Don R. La Bonte, David H. Picha and Hester A. Johnson

The quantity and pattern of carbohydrate-related changes during storage root development differed among six sweetpotato cultivars [Ipomoea batatas (L.) Poir. `Beauregard', `Heart-o-Gold', `Jewel', `Rojo Blanco', `Travis', and `White Star']. Measurements were taken for individual sugars, total sugars, alcohol-insoluble solids (AIS, crude starch), and dry weight (DW) at 2-week intervals from 7 to 19 weeks after transplanting (WAT) in two separate years. Sucrose was the major sugar during all stages of development, representing at least 68% of total sugars across all cultivars and dates. Pairwise comparisons showed `Heart-o-Gold' had the highest sucrose content among the cultivars. Sucrose content increased by 56% for `Heart-o-Gold' over the 12 weeks of assay, ranking first among the cultivars at 17 and 19 WAT and possessing 27% more sucrose than the next highest ranking cultivar, `Jewel', at 19 WAT. Fructose content profiles varied among and within cultivars. `Beauregard' showed a consistent increase in fructose throughout development while `Whitestar' showed a consistent decrease. The other cultivars were inconsistent in their fructose content profiles. Glucose content profiles were similar to those for fructose changes during development. The relationship between monosaccharides was fructose = 0.7207 × glucose + 0.0241. Cultivars with the highest fructose and glucose content could be selected by breeders after 13 WAT. Early clonal selection for high sucrose and total sugars is less promising because substantive changes in clonal rank occurred for sucrose and total sugars after 15 WAT. Cultivars ranking the highest in total sugars had either more monosaccharides to compensate for a lower sucrose content or more sucrose to compensate for a lower monosaccharide content. The relationship between DW and AIS was similar (AIS = 0.00089 × DW), and DW and AIS increased with time for most cultivars. Cultivars with high DW and AIS can be selected early during storage root development.

Free access

Jollanda Effendy, Don R. La Bonte and Niranjan Baisakh

Skinning injury in sweetpotatoes (Ipomoea batatas) is responsible for significant postharvest loss resulting from storage diseases and weight loss. Unfortunately, there is no report on the genes involved in wound healing of sweetpotato and a better understanding will facilitate improved breeding strategies. An annealing control primer (ACP) system was used to identify genes expressed after skinning injury of sweetpotato cultivar LA 07-146 storage roots. Using 20 ACPs, 63 differentially expressed genes (DEGs) were identified. Functional annotation of the DEGs revealed that genes previously shown to respond to dehydration, those involved in wounding response, and the lignin and suberin biosynthesis pathways were induced in response to skinning. Expression analysis of 18 DEGs through quantitative reverse transcription–polymerase chain reaction (PCR) showed that DEGs involved in lignin and suberin pathways were up-regulated after 8 and 12 hours of skinning. Other genes showed up- or down-regulation in their transcript abundance depending on the time the storage root was sampled after intentional skinning. The genes up-regulated in response to skinning may be useful to identify expression markers for screening sweetpotato lines tolerant to skinning injury in breeding programs.