Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: Don LaBonte x
Clear All Modify Search

Predictive models of optimum sweetpotato (Ipomoea batatas) harvest in relation to growing degree days (GDD) will benefit producers and researchers by ensuring maximum yields and high quality. A GDD system has not been previously characterized for sweetpotato grown in Louisiana. We used a data set of 116 planting dates and used a combination of minimum cv, linear regression (LR), and several algorithms in a data mining (DM) mode to identify candidate methods of estimating relationships between GDD and harvest dates. These DM algorithms included neural networks, support vector machine, multivariate adaptive regression splines, regression trees, and generalized linear models. We then used candidate GDD methods along with agrometeorological variables to model US#1 yield using LR and DM methodology. A multivariable LR model with the best adjusted r2 was based on GDD calculated using this method: maximum daily temperature (Tmax) – base temperature (B), where if Tmax > ceiling temperature [C (90 °F)], then Tmax = C, and where GDD = 0 if minimum daily temperature <60 °F. The following climate-related variables contributed to the improvement of adjusted r2 of the LR model: mean relative humidity 20 days after transplanting (DAT), maximum air temperature 20 DAT, and maximum soil temperature 10 DAT (log 10 transformed). In the DM mode, this GDD method and the LR model also demonstrated high predictive accuracy as quantified using mean square error. Using this model, we propose to schedule test harvests at GDD = 2600. The harvest date can further be optimized by predicting US#1 yield using GDD in combination with climate-based predictor variables measured within 20 DAT.

Full access

Narrow-sense heritability (h2) estimates for sugars were determined to assess the feasibility of breeding for a sweeter baked sweetpotato. Roots of parents and half-sib progeny were baked (190°C for 75 minutes) 16 weeks after harvest. Sugars from 10 gram root samples were extracted in ethanol for HPLC sugar quantification. Alcohol insoluble solid (AIS) residues (starch) were also measured from the samples. Dry matter was determined on a separate 10-g sample. Narrow-sense heritability estimates based on variance components analysis for AIS and percent dry matter were 0.20 and 0.32, respectively. Estimates for sugar data were 0.05 for sucrose, 0.52 for maltose, and 0.52 for total sugars (fructose, glucose, sucrose and maltose). These heritability estimates for maltose and total sugars imply a breeder could expect a moderate gain in sweetness over several cycles of selection.

Free access

The use of handheld computers such as personal digital assistants (PDAs) represents a feasible method of automating the transfer of files to computers for archiving and statistical analysis. Data collected using the PDA can be transferred directly to a database program on a desktop computer, virtually eliminating errors associated with the reentry of manually collected data. These devices are highly portable and can be housed in protective cases, enabling data collection even in inclement environments. The availability of handheld database programs that permit the development of electronic forms further makes the PDA a viable data collection platform for scientific research. These database applications not only allow novice users to develop customized forms that facilitate the recording of alphanumeric data; these applications also synchronize directly with current desktop-based database and spread-sheet applications. We used Microsoft Access database tables, along with Visual CE, a PocketPC database application, to generate electronic forms for collecting data from research trials conducted in 2003. To facilitate comparison with manual data collection, we also recorded observations using “pen and paper” methods. We found no differences between both methods in the length of time required to enter observations. However, the PDA transferred the data to a computer 600% faster relative to the manual reentry method. Using the handheld computer, field data was immediately available for compilation and statistical analysis within minutes of completing the data gathering process, at the same time ensuring the integrity and continuity of the files.

Free access

Seven compositionally diverse sweetpotato lines were examined for changes in individual sugar concentrations at harvest (green), after curing (7 days at 90% RH and 29.5C), and after 4 and 8 weeks of cold storage (16C) to determine the relationship between raw and cooked root sugar composition. Raw root sucrose concentrations at harvest in two dessert types, `L91-80' and `Heart-O-Gold', were at least 22% higher than other dessert types, such as `Beauregard' and `Jewel', and 26% higher than white starchy types (`Rojo Blanca' and `White Star'). The sucrose concentration remained correspondingly higher for these two lines when baked or microwaved. Total sugar concentration was not significantly correlated between raw vs. baked or microwaved roots. The major sugar in most baked and microwaved roots was maltose, accounting for 18% to 93% of the total sugars. `L91-80' behaved differently from other lines during microwaving, where sucrose was the major sugar. The total sugar concentration of `L91-80' and `Heart-O-Gold' were not statistically greater after baking and microwaving for all dates, including the white, starchy types. These results suggest the need to further evaluate the relative importance of individual sugar concentrations on consumer preference.

Free access

Clonal propagation assures the maintenance of genetic purity of a sweetpotato variety. The existence of foundation seed programs further contributes to the conservation of favorable genetic constitution in a commercial cultivar. However, the improvement of current maintenance procedures is necessary as shown by the occurrence of mutations and the decline of certain commercial varieties. Information on the nature and extent of changes in sweetpotato would therefore be useful in this regard.

`Jewel' clones obtained from eight state foundation seed programs were subjected to yield tests and a RAPD-based assay. Differences in nearly all yield grades were detected during the 1991, 1992, and 1993 seasons. The yield of U.S. No. 1 grade roots varied from 27% to 46%. The quality factors measured also varied: % alcohol insoluble solids varied by 13%, while sucrose ranged from 9.6% to 19%. Total DNA was extracted from each clone and assayed against 40 primers. All primers produced amplified fragments. A total of 110 reproducible bands was generated by 38 primers. Putative polymorphic markers were scored in 21 (18.58%) of these bands based on the presence or absence of amplified products. The results suggest an underlying cause for the variability observed in phenotypic traits within sweetpotato clones.

Free access

Our research examined whether plants originating from adventitious sprouts from fleshy sweetpotato roots are genetically more variable than plants that arise from pre-existing meristematic regions, i.e., nodes. Our study compared one plant each of `Jewel', `Sumor', and L87-95 clonally propagated for seven generations both nodally and through adventitious sprouts. PCR-based analysis of 60 samples (10 nodal and 10 adventitiously derived plants/genotype) showed 20% polymorphism among adventitious materials vs. 6% among nodally derived plants. An “analysis of molecular variance” showed that differences between propagation methods accounted for 30% of the total marker variability. Our results support previous findings that, relative to non-meristematic materials, meristematic regions strictly control cell division and DNA synthesis that exclude DNA duplication and other irregularities.

Free access

Six sweetpotato cultivars were evaluated for changes in individual sugar concentration, dry weight, and alcohol insoluble solids (AIS) during growth and development. Measurements were taken at weekly intervals from 7 to 21 weeks after transplanting. Sucrose, the major sugar during all stages of development, generally increased in concentration throughout development for `Heart-o-gold', `Travis', and `Jewel', but peaked at 17 weeks for `Beauregard' and `Whitestar'. The high-dry matter white flesh cultivars of `Rojo Blanco' and `Whitestar' contained the lowest sucrose concentration. The monosaccharides glucose and fructose generally decreased in concentration up to 17 weeks in 4 of 6 cultivars, followed by an increase from 17 to 21 weeks in all cultivars. Glucose concentration was marginally greater than fructose at all stages of development in each cultivar. Little or no increase in total sugar concentration occurred during development in `Whitestar' and `Rojo Blanco'. A substantial increase in total sugars occurred during development with `Jewel', `Beauregard', `Heart-o-gold' and `Travis'. Cultivars differed widely in their individual sugar concentrations during development. Percent dry matter increased in all cultivars from 7 to 14 weeks. Dry matter and AIS decreased during the later stages of development.

Free access

`White Jewel' is a yellow-and-orange fleshed spontaneous mutant of the orange-flesh sweetpotato [Ipomoea batatas (L.) Lam.] cultivar Jewel. Mutations in storage root flesh color, and other traits are common in sweetpotato. The orange flesh color of sweetpotato is due to β-carotene stored in chromoplasts of root cells. β-carotene is important because of its role in human health. In an effort to elucidate biosynthesis and storage of β-carotene in sweetpotato roots, microarray analysis was used to investigate genes differentially expressed between `White Jewel' and `Jewel' storage roots. β-carotene content calculated from a* color values of `Jewel' and `White Jewel' were 20.66 mg/100 g fresh weight (FW) and 1.68 mg/100 g FW, respectively. Isopentenyl diphosphate isomerase (IPI) was down-regulated in `White Jewel', but farnesyl-diphosphate synthase (FPPS), geranylgeranyl diphosphate synthase (GGPS), and lycopene β-cyclase (LCY-b) were not differentially expressed. Several genes associated with chloroplasts were differentially expressed, indicating probable differences in chromoplast development of `White Jewel' and `Jewel'. Sucrose Synthase was down-regulated in `White Jewel' and fructose and glucose levels in `White Jewel' were lower than in `Jewel' while sucrose levels were higher in `White Jewel'. No differences were observed between dry weight or alcohol insoluble solids of the two cultivars. This study represents the first effort to elucidate β-carotene synthesis and storage in sweetpotato through large-scale gene expression analysis.

Free access

Polymorphism analysis and yield tests were conducted among `Jewel' sweetpotato clones [Ipomoea batatas (L.) Lam] obtained from eight state foundation seed programs. Initially, 38 arbitrary primers generated a total of 110 scorable DNA fragments in a sample of virus-indexed plants from each clone source. The number of marker loci scored for each primer varied from one to eight with an average of 2.89. Twenty-one bands (19.1%) were scored as putative polymorphic markers based on the presence or absence of amplified products. Further estimation of variability within each clone source was accomplished by an assay of 10 sample plants per clone group by 14 marker loci generated by four selected primers. Polymorphic bands ranged from 7.1% to 35.7 % in five of eight clone groups. Field studies show variation in nearly all yield grades measured. In three tests during the 1991 and 1992 seasons, yield differences ranged from 27% to 46% within the economically important U.S. no. 1 root grade. The results suggest the usefulness of arbitrarily-primed markers in detecting intra-clonal sweetpotato DNA polymorphisms and indicate an underlying genetic cause for phenotypic variability in the crop.

Free access

Genetic uniformity was assessed among sweetpotato (Ipomoea batatas) clones propagated through adventitious and nodal procedures. A single sprout each of `Jewel,' `Sumor,' and L87-95 was used as source of clonal plants that were simultaneously propagated through conventional adventitious procedures and a tissue culture-based nodal culture technique. A sample of 15 decamer primers generated 64 scorable amplified fragments in a PCR-based assay, 29 of which were putatively polymorphic across n = 60 samples (10 each of nodal and adventitiously derived plants/genotype). Within adventitiously derived materials, putative polymorphisms ranged from 4.7% to 31.3% depending on the genotypic class. In contrast, putative polymorphisms ranged from 0.0% to 3.1% among nodally derived samples. Marker loci differentiated genotypes as well as putative marker phenotype variants through a multidimensional scaling analysis of the genetic similarity matrix. An `analysis of molecular variance' shows that genotypic effects accounted for 88.7% of the total molecular marker variability, while propagation effects (within genotypic groups) accounted for 11.3%. Results confirm that clonal plants derived from preexisting meristematic regions are more genetically uniform than plants propagated from adventitious origins.

Free access