Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Diane Feliciano Cayanan x
  • Refine by Access: All x
Clear All Modify Search
Free access

Youbin Zheng, Diane Feliciano Cayanan, and Mike Dixon

To determine the optimum feeding nutrient solution concentrations for the production of potted miniature roses (Rosa chineersis minima ‘Fall Festival’) under recirculating subirrigation conditions, plants were grown under four different nutrient solution concentrations [25%, 50%, 75%, and 100% of the full strength with an electrical conductivity (EC) of 1.756 dS·m−1]. Nutrient solution concentrations affected the stem, root, and plant total dry weight and flower and branch number. Under the 75% strength nutrient solution, these growth parameters were equal to or better than the 100% strength solution. No difference was detected in the chlorophyll content of leaves from plants that received the 50%, 75%, and 100% strength solutions during the experiment but at Day 35; only the 25% treatment had significantly lower leaf chlorophyll content than the other treatments. There were no treatment effects on the measured total foliar nutrient contents [except potassium (K)] of plants under the 75% strength solution compared with those under the 100% treatment, but nitrogen (N), phosphorus (P), and/or iron (Fe) of plants under the 25% strength solutions were below that of the acceptable range. Interveinal chlorosis and/or reddish leaves and branches were also apparent in plants under the 25% and 50% strength solutions. It is suspected that these are symptoms of N, P, and Fe deficiencies caused by the reduced nutrient solution concentrations and increased pH of the growing substrate. There were significant depletions of N and P nutrients in the 25% and 50% strength solutions at the end of the experiment, which was consistent with visual symptoms and deficiencies. Nutrient salts accumulated in the top section of the growing substrate under all treatments, but no phytotoxic effects were observed. The EC values for the top third of the growing substrate were much higher than those of the bottom two-thirds. EC for the top layer of the 100% treatment exhibited a fourfold increase compared with the bottom layer of that treatment. The NO3 , K, magnesium, and calcium for the top layer of the 100% treatment were 235%, 149%, 287%, and 245%, respectively, higher compared with the bottom layer of the 100% treatment. It was concluded that the nutrient solution concentrations typically used for potted miniature rose production in most of the Canadian greenhouses under recirculating subirrigation conditions can be safely reduced to 75% and produce better plants.

Free access

Youbin Zheng, Linping Wang, Diane Feliciano Cayanan, and Mike Dixon

To determine the nutrient solution copper (Cu2+) level above which Cucumis sativus L. (cucumber, cv. LOGICA F1) plant growth and fruit yield will be negatively affected, plants were grown on rockwool and irrigated with nutrient solutions containing Cu2+ at 0.05, 0.55, 1.05, 1.55, and 2.05 mg·L−1. Copper treatment began when plants were 4 weeks old and lasted for 10 weeks. During this 10-week period, plants were harvested at 3 weeks (short-term) and 10 weeks (long-term) after the start of Cu2+ treatment. Neither visible leaf injury nor negative Cu2+ effect was observed on plant growth (leaf number, leaf area, leaf dry weight, and stem dry weight) after 3 weeks of continuous Cu2+ treatment. However, after 10 weeks of continuous Cu2+ application, cucumber leaf dry weight was significantly reduced by Cu2+ levels 1.05 mg·L−1 or greater; leaf number, leaf area, and stem dry weight were significantly reduced by Cu2+ levels 1.55 mg·L−1 or greater. Copper (Cu2+ levels 1.05 mg·L−1 or greater) also caused root browning. Some plants under the 2.05 mg·L−1 Cu2+ treatment started to wilt after 6 weeks of continuous Cu2+ treatment. Copper treatment did not result in any change in leaf greenness until after Week 9 from the start of the treatments. There was no sign of a negative Cu2+ effect on cucumber fruit numbers after the first 2 weeks of production, but plants under the highest Cu2+ concentration treatment (2.05 mg·L−1) gradually produced fewer cucumber fruit than the control (0.05 mg·L−1) and eventually resulted in lower cucumber yield. Nutrient solution can be treated with 1.05 mg·L−1 of Cu2+ in cucumber production greenhouses; however, it is not recommended to use Cu2+ concentrations 1.05 mg·L−1 or greater continuously long-term (more than 3 weeks). When applying Cu2+, it is suggested that cucumber roots be examined regularly because roots are a better indicator for Cu2+ toxicity than leaf injury.

Free access

Diane Feliciano Cayanan, Mike Dixon, Youbin Zheng, and Jennifer Llewellyn

The recycling of irrigation water may cause the dispersal of plant pathogens. Irrigation water disinfected with 2.4 mg·L−1 of free chlorine for 5 min was overhead-applied to 17 container-grown nursery plants for 11 weeks in a commercial nursery to evaluate the response of container-grown nursery plants to chlorine. No visual symptoms of injury or growth reduction were observed on the evergreen shrubs (Juniperus horizontalis, Thuja occidentalis, Buxus microphylla, Picea glauca, Rhododendron catawbiense, Taxus media, and Chamaecyparis pisifera), but there were visual injuries and/or growth reduction on some of the deciduous shrubs (Salix integra, Hydrangea paniculata, Prunus ×cistena, Weigela florida, Physocarpus opulifolius). Symptoms of anthracnose were reduced on Cornus alba plants treated with chlorinated water. The chlorine treatment did not affect leaf chlorophyll content. The chlorine treatment killed all fungi and oomycetes in the irrigation water (DNA multiscan). Although there were visible leaf injuries and growth reduction on some of the deciduous plants, chlorine injury did not render them unsalable. Results suggest that irrigation water treated with 2.4 mg·L−1 free chlorine for 5 min will effectively control the dispersal of common plant pathogens without reducing the market value of container-grown plants.

Free access

Diane Feliciano Cayanan, Youbin Zheng, Ping Zhang, Tom Graham, Mike Dixon, Calvin Chong, and Jennifer Llewellyn

Phytotoxic responses of five container-grown nursery species (Spiraea japonica ‘Goldmound’, Hydrangea paniculata ‘Grandiflora’, Weigela florida ‘Alexandra’, Physocarpus opulifolius ‘Summer Wine’, and Salix integra ‘Hakura Nishiki’) to chlorinated irrigation water and critical free chlorine thresholds were evaluated. Plants were overhead-irrigated with water containing 0, 2.5, 5, 10, and 20 mg·L−1 of free chlorine for 6 weeks. The following measurements were used to assess the treatments: visual injury, growth, leaf chlorophyll content index, leaf chlorophyll fluorescence, leaf net CO2 exchange rate, and stomatal conductance. All species exhibited one or more signs of chlorine injury, including foliar necrotic mottling, foliar necrosis and chlorosis, decreased plant height, and increased premature abscission of foliage with species varying in sensitivity to free chlorine concentrations of irrigation water. The results indicated that the critical free chlorine threshold of S. japonica, H. paniculata, W. florida, and S. integra was 2.5 mg·L−1 and 5 mg·L−1 for P. opulifolius. Our results suggested that irrigation water containing free chlorine less than 2.5 mg·L−1 should not adversely affect the growth or appearance of ornamental woody shrubs.

Free access

Diane Feliciano Cayanan, Ping Zhang, Weizhong Liu, Mike Dixon, and Youbin Zheng

Recycled irrigation water is one of the major sources of inoculum and may spread plant pathogens throughout the nursery or greenhouse operation. Chlorination is the most economical method of disinfecting water and has been adopted by some North American commercial growers. However, chlorine has not been assessed as a disinfectant for the common plant pathogens Phytophthora infestans, Phytophthora cactorum, Pythium aphanidermatum, Fusarium oxysporum, and Rhizoctonia solani. These pathogens were exposed to five different initially free chlorine solution concentrations ranging from 0.3 to 14 mg·L−1 in combination with five contact times of 0.5, 1.5, 3, 6, and 10 min to determine the free chlorine threshold and critical contact time required to kill each pathogen. Results indicated that the free chlorine threshold and critical contact time for control of P. infestans, P. cactorum, P. aphanidermatum, F. oxysporum, and R. solani were 1, 0.3, 2, 14, and 12 mg·L−1 for 3, 6, 3, 6, and 10 min, respectively.