Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Dhananjay Naik x
Clear All Modify Search

Highbush blueberry (Vaccinium corymbosum) is susceptible to winter freezing injury and frost damage in the spring. As part of an ongoing project to understand the process of cold acclimation, we isolated a C-repeat binding factor (CBF) transcriptional activator gene-coding region from the highbush blueberry cultivar Bluecrop. Expression of the highbush blueberry CBF gene was compared in floral buds of the cold-tolerant northern highbush cultivar Bluecrop and the more cold-sensitive southern rabbiteye (V. virgatum) blueberry cultivar Tifblue. Relative gene expression was higher in ‘Bluecrop’ than in ‘Tifblue’. Expression in both cultivars was highest at the earliest time point in the fall (coincident with the first stage of cold acclimation), declined during the later fall and winter, and, in ‘Bluecrop’, increased again as buds deacclimated, when temperatures tend to fluctuate. To confirm the putative identity of the gene as a member of the CBF gene family, and to determine if expression in a heterologous system could enhance freezing tolerance, the blueberry gene coding sequence was overexpressed in transgenic Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Transgenic plants expressing the putative blueberry CBF gene exhibited induced expression of the A. thaliana cold-regulated (COR) genes COR78 and COR6.6, under non-inducing conditions (i.e., 23 °C); however, expression of two other COR genes was unaffected. Transgenic plants also exhibited enhanced freezing tolerance under non-acclimated conditions, but not to the level of acclimated control plants. Thus, the expression pattern in floral buds and the ability of the isolated gene to turn on a subset of COR genes and increase freezing tolerance in a heterologous system suggest it is a functional member of the CBF gene family in blueberry.

Free access

To gain a better understanding of changes in gene expression associated with cold acclimation in the woody perennial blueberry (Vaccinium corymbosum L.) and ultimately use this information to develop more freeze-tolerant cultivars, a genomics approach based on the analysis of expressed sequence tags (ESTs) and microarrays was undertaken. Initially, two standard cDNA libraries, constructed using RNA from cold-acclimated (CA) and nonacclimated (NA) floral buds of the blueberry cultivar Bluecrop, were used for the generation of ≈2400 ESTs, half from each library. Putative functions were assigned to cDNAs based on homology to other genes/ESTs from GenBank. From contig analyses, 796 and 865 unique transcripts were identified from the CA and NA libraries, respectively. The most highly abundant cDNAs, that were picked many more times from one library than from the other, were identified as representing potentially differentially expressed transcripts. A cDNA microarray was constructed and used to study gene expression under cold-acclimating conditions in the field and cold room. Results indicated that the abundance of transcripts of numerous blueberry genes change during cold acclimation, including genes not found previously to be cold-responsive in Arabidopsis, and, interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Finally, forward and reverse subtracted cDNA libraries were prepared from ‘Bluecrop’ RNA to enrich for transcripts that are expressed at higher levels in floral buds at 400 h and at 0 h of low-temperature exposure, respectively. Many genes encoding putative transcription factors and other proteins related to signal transduction were identified from both libraries.

Free access