Search Results

You are looking at 1 - 10 of 43 items for

  • Author or Editor: Dewayne L. Ingram x
Clear All Modify Search
Free access

Dewayne L. Ingram

This presentation focuses on driving forces and philosophies in the current Age of Accountability and explores ideas of how to respond. The increased scrutiny faced by all public agencies is requiring that Cooperative Extension approach the issue of accountability a bit differently. We must articulate our objectives and values to specific clientele groups, the general public, and government officials. Hard questions are being asked about past and anticipated return on tax dollars invested in state and federal agencies. The Government Performance and Results Act of 1993 requires “performance based budgeting” for all federal agencies, including the USDA. Each federal agency must develop an action plan with well-defined objectives and anticipated impacts to justify the allocation of federal funds. The overriding theme is not how busy we are and how many activities we can report, but what has been the impact of our efforts.

Full access

Dewayne L. Ingram

The University of Kentucky's Department of Horticulture, led by the extension faculty working with targeted industry associations, facilitated the creation of the Kentucky Horticulture Council to be the voice of a diverse industry. Leadership in industry strategic planning, promoting the opportunities for expansion of the horticulture industry, and educating state agriculture, legislative and university leaders provided a focus of energy and positioned the industry to access emerging resources. Leadership development has been an anticipated byproduct of this process.

Free access

Dewayne L. Ingram

The contributions of interrelated production system components of a field-grown, 2-m-tall, 5-cm-caliper Picea pungens (colorado blue spruce) in the upper midwestern (liner) and lower midwestern (finished tree) regions of the United States to its carbon footprint were analyzed using life cycle assessment protocols. The seed-to-landscape carbon footprint was 13.558 kg carbon dioxide equivalent (CO2e), including sequestration of 9.14 kg CO2e during production. The global warming potential (GWP) from equipment use was the dominant contributor to the carbon footprint of production. Seventy-six percent of the GWP investments during field production occurred at harvest. Querying the model, among other things, revealed that adding one year to the field production phase would add less than 3% to the seed-to-landscape GWP of the product. The weighted positive impact of carbon (C) sequestration during a 50-year life was 593 kg CO2e. After its useful life, takedown and disposal would result in emissions of 148 kg CO2e, resulting in a net positive, life cycle impact on atmospheric CO2 of ≈431 kg CO2e.

Free access

Dewayne L. Ingram and Charles R. Hall

The objective of this study was to examine the differences in global warming potential (GWP) and variable cost structure of a 5-cm-caliper red maple tree grown using two alternative production methods including a traditional field [balled and burlapped (BNB)] production system and a containerized, pot-in-pot (PIP) production system. Feedback from nursery growers was obtained to model each production system including the labor required for each cultural practice, materials used, and the hourly usage of tractors and other equipment. Findings from the study indicate that the total system GWP and variable cost for the PIP tree system is −671.42 kg of carbon dioxide equivalent (CO2e) and $250.76, respectively, meaning that the tree sequesters much more carbon during its life than is emitted during its entire life cycle. The same holds true for the BNB tree; however, in this system, the GWP of the tree −666.15 kg CO2e during its life cycle at a total variable cost of $236.13. Thus, the BNB tree costs slightly less to produce than its PIP counterpart but the life cycle GWP is slightly less positive as well.

Free access

John M. Ruter and Dewayne L. Ingram

Ilex crenata Thunb. `Rotundifolia' split-root plants were grown for 3 weeks with root zones at 30/30, 30/34, 30/38, 30/42, 34/34, 38/38, and 42/42C. The 38C root-zone treatment was the upper threshold for several growth and physiological characteristics. A portion of the root system grown at or near the optimum temperature could compensate, in terms of shoot growth, for part of the root system exposed to supraoptimal root-zone temperatures up to 38C. Higher root-zone temperatures did not affect short-term photosynthetic rates or root : shoot ratios, but altered photosynthate partitioning to various stem and root sinks. Although no differences were found for total 14C partitioned to the roots, partitioning of 14C into soluble and insoluble fractions and the magnitude of root respiration and exudation were influenced by treatment. Heating half of a root system at 38C increased the amount of 14C respired from the heated side and increased the total CO2respired from the nonheated (30C) half. Exposure of both root halves to 42C resulted in membrane damage that increased the loss of 14C-labeled photosynthates through leakage into the medium.

Full access

Carey Grable, Joshua Knight and Dewayne L. Ingram

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.

Free access

Chris A. Martin and Dewayne L. Ingram

Root growth of Magnolia grandiflora Hort. `St. Mary' was studied for 16 wk after an 8-wk exposure period to 30°, 34°, 38°, or 42°±0.8°C root-zone temperature (RZT) treatments applied 6 hr daily, Immediately after the RZT treatment period, total root length was similar for trees exposed to 30°, 34°, and 38°C and was reduced 45% at 42° compared to 38°C. For weeks eight and 18 of the post-treatment period, response of total root length to RZT was linear. Total root length of trees exposed to 28°C was 247% and 225% greater than those exposed to 42°C RZT at week eight and 16, respectively. Root dry weight from the 42°C RZT treatment was 29% and 48% less than 38° and 34°C RZT treatment, respectively, at week eight. By week 16, root dry weight as a function of RZT had changed such that the 42°C RZT was 43% and 47% less than 38° and 34°C RZT, respectively. Differences in root growth patterns between weeks eight and 16 suggest that trees were able to overcome the detrimental effects of the 38°C treatment whereas growth suppression by the 42°C treatment was still evident after 16 wk. Previous exposure of tree roots to supraoptimal RZT regimens may have long-term implications for suppressing growth and lengthening the establishment period of trees in the landscape,

Free access

Chris A. Martin and Dewayne L. Ingram

Leaf photosynthesis of Magnolia grandiflora `St. Mary' (13-month-old rooted cuttings) was studied when tree roots were exposed to 28, 35, or 42 ± 0.8C for 8 weeks. Root-zone temperature (RZT) treatments were sustained for 6 hours per day by an electronically controlled root-heating system. The experiment was conducted in a 3×7.5-m walk-in growth room. Growth room irradiance was supplied by eighteen 1000-W, phosphor-coated metal-arc HID lamps (photosynthetic photon flux = 600 μpmol-2·-1 at canopy height) for 13 hours daily augmented with 3 hours of incandescent light during the dark period. Leaf C assimilation (A) at an RZT of 42C decreased linearly over 8 weeks compared to leaf A at RZTs of 35 and 28C. Leaf A was similar for all trees at week 1; however, leaf A at an RZT of 42C was 30% and 34% less than at RZTs of 3.5 and 28C, respectively, at week 8. Stomatal conductance at RZTs of 28 and 35C increased linearly over 8 weeks compared to conductance at a RZT of 42C. Intercellular CO2 levels were not affected by RZT treatments. This finding suggests that reductions in leaf A were nonstomatal. Photosynthetic inhibition resulted in reduced shoot and root growth. Operators of outdoor container production nurseries should implement cultural practices that minimize exposure of tree roots to RZTs >35C.

Free access

Chris A. Martin and Dewayne L. Ingram

Root growth of southern magnolia (Magnolia grandiflora Hort. `St. Mary') was studied for 16 weeks after an 8-week exposure to 30, 34, 38, or 42 ± 0.8C root-zone temperature (RZT) treatments applied for 6 hours daily. Immediately after RZT treatments, total root length of trees responded negatively to increased RZT in a quadratic pattern and the shoot and root dry weight of trees was similar. However, 8 and 16 weeks after RZT treatments, total root length responded linearly in a negative pattern to increased RZT, and shoot and root dry weight responded negatively to increased RZT in a linear and quadratic pattern, respectively. Root dry weight of trees exposed to 42C RZT treatment was 29% and 48% less than 38 and 34C RZT treatments, respectively, at week 8. By week 16, root dry weight as a function of RZT had changed such that the 42C RZT was 43% and 47% less than 38 and 34C RZT, respectively. Differences in root growth patterns between weeks 8 and 16 suggest that trees were able to overcome the detrimental effects of the 38C treatment, whereas growth suppression by the 42C treatment was still evident after 16 weeks.