Search Results

You are looking at 1 - 10 of 42 items for

  • Author or Editor: Dewayne L. Ingram x
Clear All Modify Search
Free access

Dewayne L. Ingram

The contributions of interrelated production system components of a field-grown, 2-m-tall, 5-cm-caliper Picea pungens (colorado blue spruce) in the upper midwestern (liner) and lower midwestern (finished tree) regions of the United States to its carbon footprint were analyzed using life cycle assessment protocols. The seed-to-landscape carbon footprint was 13.558 kg carbon dioxide equivalent (CO2e), including sequestration of 9.14 kg CO2e during production. The global warming potential (GWP) from equipment use was the dominant contributor to the carbon footprint of production. Seventy-six percent of the GWP investments during field production occurred at harvest. Querying the model, among other things, revealed that adding one year to the field production phase would add less than 3% to the seed-to-landscape GWP of the product. The weighted positive impact of carbon (C) sequestration during a 50-year life was 593 kg CO2e. After its useful life, takedown and disposal would result in emissions of 148 kg CO2e, resulting in a net positive, life cycle impact on atmospheric CO2 of ≈431 kg CO2e.

Free access

Dewayne L. Ingram

This presentation focuses on driving forces and philosophies in the current Age of Accountability and explores ideas of how to respond. The increased scrutiny faced by all public agencies is requiring that Cooperative Extension approach the issue of accountability a bit differently. We must articulate our objectives and values to specific clientele groups, the general public, and government officials. Hard questions are being asked about past and anticipated return on tax dollars invested in state and federal agencies. The Government Performance and Results Act of 1993 requires “performance based budgeting” for all federal agencies, including the USDA. Each federal agency must develop an action plan with well-defined objectives and anticipated impacts to justify the allocation of federal funds. The overriding theme is not how busy we are and how many activities we can report, but what has been the impact of our efforts.

Full access

Dewayne L. Ingram

The University of Kentucky's Department of Horticulture, led by the extension faculty working with targeted industry associations, facilitated the creation of the Kentucky Horticulture Council to be the voice of a diverse industry. Leadership in industry strategic planning, promoting the opportunities for expansion of the horticulture industry, and educating state agriculture, legislative and university leaders provided a focus of energy and positioned the industry to access emerging resources. Leadership development has been an anticipated byproduct of this process.

Free access

Chris A. Martin and Dewayne L. Ingram

Root growth of Magnolia grandiflora Hort. `St. Mary' was studied for 16 wk after an 8-wk exposure period to 30°, 34°, 38°, or 42°±0.8°C root-zone temperature (RZT) treatments applied 6 hr daily, Immediately after the RZT treatment period, total root length was similar for trees exposed to 30°, 34°, and 38°C and was reduced 45% at 42° compared to 38°C. For weeks eight and 18 of the post-treatment period, response of total root length to RZT was linear. Total root length of trees exposed to 28°C was 247% and 225% greater than those exposed to 42°C RZT at week eight and 16, respectively. Root dry weight from the 42°C RZT treatment was 29% and 48% less than 38° and 34°C RZT treatment, respectively, at week eight. By week 16, root dry weight as a function of RZT had changed such that the 42°C RZT was 43% and 47% less than 38° and 34°C RZT, respectively. Differences in root growth patterns between weeks eight and 16 suggest that trees were able to overcome the detrimental effects of the 38°C treatment whereas growth suppression by the 42°C treatment was still evident after 16 wk. Previous exposure of tree roots to supraoptimal RZT regimens may have long-term implications for suppressing growth and lengthening the establishment period of trees in the landscape,

Full access

Susmitha S. Nambuthiri and Dewayne L. Ingram

The demand for groundcover plants for landscape use is increasing. Plantable containers are becoming available in sizes appropriate for groundcover plants. Landscapers are seeking ways to decrease the time required to prepare and plant groundcover beds. Studies were conducted in 2011 and 2012 to evaluate plantable containers for a variety of groundcover plants. The study has shown that ‘Bronze Beauty’ ajuga (Ajuga reptans), ‘Herman’s Pride’ lamiastrum (Lamiastrum galeobdolon), ‘Beacon Silver’ lamium (Lamium maculatum), ‘Immergrunchen sedum (Sedum hybridum), ‘Red Carpet Stonecrop’ sedum (Sedum spurium), and ‘Vera Jameson’ sedum (Sedum telephium) were grown to a marketable size from 1.5-inch plugs in 8 weeks in Lexington, KY, when transplanted in May through August. ‘Big Blue’ liriope (Liriope muscari) from bare root bibs required 12 weeks. Plant growth in a 90-mm paper container and 80-mm bioplastic container was similar to that of plants grown in standard 3-inch rigid plastic containers and required 20% less time to transplant into the landscape and grew rapidly after transplanting in the field. Peat containers in this production system yielded smaller plants and slower ground coverage after transplanting in the field than plants grown in the other containers.

Full access

Carey Grable, Joshua Knight and Dewayne L. Ingram

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.

Free access

Dewayne L. Ingram and Charles R. Hall

The objective of this study was to examine the differences in global warming potential (GWP) and variable cost structure of a 5-cm-caliper red maple tree grown using two alternative production methods including a traditional field [balled and burlapped (BNB)] production system and a containerized, pot-in-pot (PIP) production system. Feedback from nursery growers was obtained to model each production system including the labor required for each cultural practice, materials used, and the hourly usage of tractors and other equipment. Findings from the study indicate that the total system GWP and variable cost for the PIP tree system is −671.42 kg of carbon dioxide equivalent (CO2e) and $250.76, respectively, meaning that the tree sequesters much more carbon during its life than is emitted during its entire life cycle. The same holds true for the BNB tree; however, in this system, the GWP of the tree −666.15 kg CO2e during its life cycle at a total variable cost of $236.13. Thus, the BNB tree costs slightly less to produce than its PIP counterpart but the life cycle GWP is slightly less positive as well.

Free access

Dewayne L. Ingram and R. Thomas Fernandez

System-level research has resulted in significant advancements in horticultural crop production. Contributions of individual components to production efficiency, cost, and environmental impact have been a focus of such research. Public awareness of the environmental impact of products and services is increasing. Life cycle assessment (LCA) is a tool to study horticultural crop production systems and horticultural services and their individual components on environmental impacts such as the carbon footprint, stated as global warming potential. This manuscript introduces LCA and describes how this tool can be used to generate information important to the industry and consuming public.

Free access

John M. Ruter and Dewayne L. Ingram

Respiration of excised Ilex crenata (Thunb.) `Rotundifolia' roots as influenced by root-zone growth temperature and buffer solution temperature was measured in the presence and absence of salicylhydroxamic acid (SHAM) and potassium cyanide (KCN). Respiration rates of roots excised from plants grown for 3 weeks with root-zones at 30, 34, 38, or 42C decreased linearly with increased root-zone growth temperatures when the buffer solution was maintained at 25C. When the buffer solution was the same temperature as the root growth temperature, respiration rates were similar. Respiration in roots from plants grown with the root zone at 30C was maximal with the buffer solution at 34C and decreased to a minimum at 46C. Above 46C, a presumably extra-mitochondrial stimulation of O2 consumption occurred. The activity of the CN-resistant pathway was fully engaged (P' = 0.99) when roots were grown at 30C and buffer solution was at 25C (30-25). CN-resistant pathway activity decreased with `the buffer solution at 46C.