Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Dennis Margosan x
Clear All Modify Search

Navel oranges (Citrus sinensis) were sorted into four groups under ultraviolet illumination in commercial packinghouse black light rooms based upon the amount of fluorescence visible on each fruit to determine if fluorescence was predictive of peel quality. The groups corresponded to fruit with 1) little or no fluorescence (group 0), 2) low fluorescence (group 1), 3) moderate fluorescence (group 2), and 4) large fluorescent areas (group 3) that were indicative of developing decay lesions. Identification and elimination of group 3 fruit in black light rooms is a common practice now, but the other groups pass through these rooms. Six tests were conducted over a 2-year period during different times in the mid to late navel orange season. Fruit were visually evaluated for peel quality within 24 hours of their initial segregation into fluorescence groups and again following 3 weeks of storage at 15 °C. Peel quality assessment was based upon commercial grading practices, and the fruit were placed into fancy, choice, juice, or decay classes. Fruit with low to no peel fluorescence (groups 0 and 1) had numerous fancy-grade fruit and few juice- and decay-grade fruit in comparison with the other two groups. In contrast, fruit with moderate fluorescence (group 2) were of poor peel quality. In the initial evaluation, this group had 28% fewer fancy fruit and 19% more juice fruit than did group 0. During storage, group 2 fruit declined markedly in quality and numerous fruit of group 2 in the choice and juice classes decayed; the percentage of decayed fruit increased from 1% initially to 29% after 3 weeks of storage. Navel oranges in group 3, with numerous and obvious fluorescent decay lesions, mainly consisted of either juice grade or decayed fruit; 70% of group 3 decayed after 3 weeks. In addition to removing fluorescing fruit that have obvious indications of decay (group 3), it would be advantageous to remove or otherwise recognize that fruit with moderate levels of fluorescence (group 2) are also of lower quality and that they should not be selected for long storage or distant transport. Their identification may be most practical with an automated system using machine vision and ultraviolet illumination.

Free access

Abstract

Early-season ‘Perlette’, ‘Cardinal’, ‘Flame Seedless’, and ‘Thompson Seedless’ table grapes (Vitis vinifera L.) were fumigated at 21°C with methyl bromide (MB) at 32 g m−3 for 3.5 hours, SO2 (0.5% for 0.5 hours), or the 2 fumigants in sequence. Quality evaluations were made following holding at 2.5° for 6 days and again after an additional 2 days at 21°. SO2 fumigation reduced the percentage of rotten berries and the combination of SO2 and MB reduced the amount of bunch rot (Rhizopus rot). SO2 slightly bleached the color of the dark-pigmented grapes. Bromine residues in MB-fumigated and untreated grapes averaged 10.8 and 1.4 ppm, respectively.

Open Access

A new vapor phase hydrogen peroxide (VPHP) technology that uses relatively dry hydrogen peroxide pulses is a promising method for the disinfection of surface-borne bacteria, yeasts, and molds on walnut nutmeats. The number of colony forming units per gram (cfu/g) on untreated nutmeats was compared to those VPHP treated. Three culture media; dichloran rose bengal chloramphenicol agar base (DRBC, Oxoid), aerobic plate count agar (APC, Oxoid), and potato dextrose agar (PDA, Sigma), were utilized to evaluate cfu/g. Similar numbers of cfu/g of product were observed on APC and PDA. The more selective DRBC had lower cfu/g. Microorganisms washed from untreated walnut nutmeats purchased at retail outlets ranged between 17,000-29,000 cfu/g depending upon the culture medium used. The number of cfu/lg on nutmeats after VPHP treatments was reduced to 500-1400, a 95% reduction. VPHP may offer an alternative to propylene oxide fumigation. The moisture content of nutmeats was not significantly altered by VPHP. The Food and Drug Administration lists hydrogen peroxide as a “generally recognized as safe substance” (GRAS). Hydrogen peroxide is already produced in a food grade for aseptic packaging.

Free access

The use of ultraviolet fluorescence to identify freeze-damaged navel oranges (Citrus sinensis) was evaluated using fruit harvested following a natural freeze that occurred in California in Jan. 2007. Navel oranges were harvested after the freeze from 14 sites that were previously determined to have a slight to moderate amount of freeze damage. The fruit were evaluated for the presence of small yellow spots characteristic of freeze damage that fluoresce when viewed under a ultraviolet-A (365 nm) source and were then cut and rated using a method currently used by the California Department of Food and Agriculture (CDFA) to determine the presence of internal freeze damage. The percentage of freeze-damaged fruit in each lot as determined by the CDFA method ranged from 0% to 89%. The accuracy of classifying fruit as freeze damaged in each lot by peel fluorescence averaged 44%, with the fruit lots containing the greatest amount of freeze damage having the highest classification percentages. False-positives occurred at a lower rate than false-negatives among the lots. Although some fading was evident, the fluorescence persisted and was readily visible for at least 9 weeks after the freeze event. Removal of fruit with ultraviolet peel fluorescence was ineffective in reducing the percentage of damaged fruit within the examined lots. In the second part of the test, eighteen lots of potentially freeze-damaged fruit were obtained from a packing house, immediately evaluated for freeze damage using ultraviolet light, and then after 4 weeks of storage, were evaluated again using the CDFA method. Fruit that had a slight to moderate degree of freeze damage were tasted and evaluated for sensory characteristics. Both methods of freeze damage detection were poorly related to the sensory characteristics.

Free access