Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Dennis L. Martin x
Clear All Modify Search

Six African bermudagrass (Cynodon transvaalensis Burtt-Davy) genotypes, one common bermudagrass [C. dactylon (L.) Pers. var. dactylon] genotype, and ‘Tifway’ (C. dactylon × transvaalensis) hybrid bermudagrass were evaluated for shoot type, leaf angle, and shoot angle. Evaluations were conducted to determine if these measurements could be used to differentiate among upright, intermediate, and prostrate growth habits. Significant differences were found for all three techniques, but attempts to group plants together as having prostrate, intermediate, or upright growth habits was not possible. ‘Tifway’ was intermediate between the African bermudagrass genotypes and the common genotype for shoot type observations, but was more similar to upright-growing African bermudagrass for leaf angle and the more prostrate-growing common bermudagrass for shoot angle. Quantification of shoot type and leaf angle did not appear as useful as shoot angle measurements for screening germplasm to identify upright or prostrate growth habits in bermudagrass.

Free access

Bermudagrass (Cynodon sp.) is one of the most commonly used warm-season turfgrasses in the southern areas and transition zone of the United States. Due to the increasing demand for water resources and periodic drought, it is important to improve the drought resistance of bermudagrass for water savings and persistence under drought stress. This study was conducted to determine whether experimental bermudagrass genotypes have improved drought resistance compared with the standard cultivars Tifway and Riley’s Super Sport (Celebration®) at Stillwater, OK. The trials were designed as randomized complete blocks with four replications in Expt. I and three replications in Expt. II. In each experiment, genotypes were subjected to progressive acute drought conditions using polyethylene waterproof tarps to exclude precipitation over a period of at least 72 d. Bermudagrass entries were evaluated for turfgrass quality, leaf firing, normalized difference vegetation index, and live green cover at least once each week during the dry-down. Substantial drought response variations were found in this study, and all parameters were positively and highly correlated. A turf performance index (TPI) was assembled based on the number of times an entry ranked in the top statistical group across all testing parameters on each date. ‘DT-1’ (TifTuf®) and OSU1221 had the top TPI in both experiments. Most of bermudagrass experimental genotypes had equal or greater TPI than the standard Tifway, showing improved drought resistance through breeding effects. The identification of superior drought resistance experimental genotypes provided useful information to breeders on cultivar release.

Open Access

Turfgrass managers are using reclaimed water as an irrigation resource because of the decreasing availability and increasing cost of fresh water. Much attention, thereby, has been drawn to select salinity-tolerant turfgrass cultivars. An experiment was conducted to evaluate the relative salinity tolerance of 10 common bermudagrasses (Cynodon dactylon) under a controlled environment in a randomized complete block design with six replications. ‘SeaStar’ seashore paspalum (Paspalum vaginatum) was included in this study as a salinity-tolerant standard. All entries were tested under four salinity levels (1.5, 15, 30, and 45 dS·m−1) consecutively using subirrigation systems. The relative salinity tolerance among entries was determined by various parameters, including the normalized difference vegetation index (NDVI), percentage green cover determined by digital image analysis (DIA), leaf firing (LF), turf quality (TQ), shoot vertical growth (VG), and dark green color index (DGCI). Results indicated that salinity tolerance varied among entries. Except LF, all parameters decreased as the salinity levels of the irrigation water increased. ‘Princess 77’ and ‘Yukon’ provided the highest level of performance among the common bermudagrass entries at the 30 dS·m−1 salinity level. At 45 dS·m−1, the percent green cover as measured using DIA varied from 4.97% to 16.11% among common bermudagrasses, where ‘SeaStar’ with a DIA of 22.92% was higher than all the common bermudagrass entries. The parameters LF, TQ, NDVI, DGCI, VG, and DIA were all correlated with one another. Leaf firing had the highest correlation with other parameters, which defined its value as a relative salinity tolerance measurement for common bermudagrass development and selection.

Full access

Bermudagrass (Cynodon sp.) is a highly productive, warm-season, perennial grass that has been grown in the United States for turfgrass, forage, pasture, rangeland, and roadside use. At the same time, many bermudagrass production and reclamation sites across the United States are affected by soil salinity issues. Therefore, identifying bermudagrass with improved salinity tolerance is important for successfully producing bermudagrass and for reclaiming salt-affected sites with saline irrigated water. In this project, the relative salinity tolerance of seven clonal-type bermudagrass was determined, including industry standards and an Oklahoma State University (OSU) experimental line. The experiment was conducted under a controlled environment with six replications of each treatment. Seven bermudagrass entries were exposed to four salinity levels (1.5, 15, 30, and 45 dS·m−1) consecutively via subirrigation systems. The relative salinity tolerance among entries was determined by normalized difference vegetation index (NDVI), digital image analysis (DIA), leaf firing (LF), turf quality (TQ), shoot dry weight (SW), visual rating (VR), and dark green color index (DGCI). Results indicated that there were variable responses to salinity stress among the entries studied. As salinity levels of the irrigation water increased, all evaluation criterion decreased, except LF. All entries had acceptable TQ when exposed to 15 dS·m−1. When exposed to 30 dS·m−1, experimental entry OKC1302 had less LF than all other entries except ‘Tifway’, while ‘Midlawn’ showed more LF than all the entries. Leaf firing ranged from 1.0 to 2.7 at 45 dS·m−1, where ‘Tifway’ outperformed all other entries. At 45 dS·m−1, the live green cover as measured using DIA ranged from 3.07% to 24.72%. The parameters LF, TQ, NDVI, DGCI, SW, and DIA were all highly correlated with one another, indicating their usefulness as relative salinity tolerance measurements.

Free access

Consumers desire low-input turfgrasses that have tolerance to both shade and drought stresses. Several sedges (Carex sp.) and nimblewill (Muhlenbergia schreberi) are native plants prevalent in dry woodland ecosystems in Oklahoma, USA, and may have potential as alternatives to conventional species in dry shaded turfgrass systems. To evaluate selected species for this purpose, a multilocation field trial was conducted in Stillwater and Perkins, OK. Four sedges [gray sedge (Carex amphibola), Leavenworth’s sedge (Carex leavenworthii), ‘Little Midge’ palm sedge (Carex muskingumensis), and Texas sedge (Carex texensis)] and nimblewill were evaluated as alternative turfs for the study. Alternative turfs were compared against two conventional turfgrasses [‘El Toro’ Japanese lawngrass (Zoysia japonica) and ‘Riley’s Super Sport’ bermudagrass (Cynodon dactylon)]. The conventional turfgrasses outperformed each sedge and nimblewill in coverage and turf quality. Leavenworth’s sedge, gray sedge, and Texas sedge persisted well but did not spread quickly enough to achieve a dense canopy by the end of the 2-year trial. In contrast, nimblewill established quickly but declined in coverage over time. This study demonstrated some sedges and nimblewill can be established and maintained as a low-input turf in dry shade, but development of unique management practices is still required for acceptable performance.

Open Access

Drought stress is a major limiting factor for warm-season turfgrass growth during the summer in the U.S. transition zone. Genotypic variation in drought resistance exists among bermudagrasses (Cynodon sp.), but the mechanisms of drought resistance are poorly understood. Our objectives were to investigate physiological changes in three bermudagrass cultivars under a well-watered condition and drought stress. to determine expression differences in soluble protein and dehydrin of the three cultivars under well-watered and drought stress conditions, and to identify the association between dehydrin proteins and drought tolerance. Grasses included a high drought-resistant cultivar, Celebration, a low drought-resistant cultivar, Premier, and a newly released cultivar, Latitude 36. In both well-watered and drought treatments, ‘Latitude 36’ had the highest visual quality and lower or medium electrolyte leakage among three cultivars. In the drought treatment, 16- and 23-kDa dehydrin proteins were observed in ‘Latitude 36’ but not in ‘Celebration’ or ‘Premier’. Our results indicate that the 16- and 23-kDa dehydrin expressions could be associated with drought tolerance and contribute to drought tolerance in bermudagrass.

Free access

Turfgrass varietal identification is critical and allows turfgrass professionals to manage the turf based on the cultural requirements of the variety. On the Oklahoma State University (OSU) Baseball Field (OSUBF) in Stillwater, OK, some bermudagrass (Cynodon sp.) plants exhibited desirable traits but their exact identities were unknown due to the installation of multiple varieties over time. Accordingly, the major objective of this study was to identify if the desirable bermudagrass plants were from commercially available known varieties. Recently, the OSU turf bermudagrass breeding program developed and entered three fairway-type clonal bermudagrasses in the 2013 National Turfgrass Evaluation Program (NTEP) bermudagrass trial: OKC 1131, OKC 1163, and OKC 1302. The secondary objective was to create molecular marker profiles for these three experimental lines. Five OSUBF samples were analyzed using simple sequence repeat (SSR) markers, along with 24 clonal, commercially available turf bermudagrass varieties widely used in Oklahoma, the three OSU experimental clones, six randomly selected single plants from ‘Riviera’, and two controls for common bermudagrass (Cynodon dactylon) and african bermudagrass (Cynodon transvaalensis). SSR marker genotyping data indicated that the five OSUBF plants were clones of an identical bermudagrass. The OSUBF bermudagrass had the same fingerprint as ‘Astro-DLM’ bermudagrass for 14 out of 16 SSRs genotyped. Fifteen out of 30 additional SSR markers also showed differences between the OSUBF bermudagrass and ‘Astro-DLM’. The three OSU experimental clones were different from each other and had different fingerprints from the other tested varieties based on SSR profiles, indicating they are new breeding lines. These four distinct lines have potential to be released as new varieties if they demonstrate superior turf quality traits and adaptation over time.

Free access

Turfgrass performance can be assessed in terms of visual quality, but evaluators require training and may be distracted by many factors that affect accuracy and consistency. The objectives of this study were to assess a handheld optical sensor (GreenSeeker) for evaluating overall turfgrass quality in three turf species over two growing seasons, and to compare the combined time required for visual evaluation and data entry with the time required for the same functions using the handheld optical sensor. Visual quality ratings and sensor ratings were collected on schedules prescribed by the National Turfgrass Evaluation Program for the 2002 bermudagrass (Cynodon spp.), 2002 buffalograss (Buchloe dactyloides), and 2002 zoysiagrass (Zoysia spp.) studies in 2003 and 2004. Use of the sensor reduced the time required to complete data collection and data entry by 58% compared with human visual evaluation. Of the three species tested, the bermudagrass evaluation had the strongest correlation between ratings collected by the human evaluator and the sensor [r = 0.79 in 2003 (n = 343), r = 0.85 in 2004 (n = 343)]. The handheld optical sensor provided a consistent, objective evaluation of overall turfgrass quality and required less time than visual evaluation. The handheld optical sensor provides advantages for assessing turfgrass quality that cannot be realized by human evaluation, but the sensor alone is not sufficient for specific evaluations such as color, texture, or density that are routinely characterized by human evaluation.

Full access

Suitable tensile strength is essential for sod harvest, transport, and installation. Thirty-nine bermudagrass (Cynodon sp.) entries were evaluated for sod handling quality (SHQ) and sod tensile strength (STS) during 2014–15. The SHQ (a discontinuous qualitative parameter) was evaluated using a 1 to 5 scale with 1 = complete pad separation during handling and 5 = no cracking or separation in the sod pad with excellent quality. The STS (a quantitative parameter) was determined using the force required to shear/separate the sod pad. Sod harvests were conducted at 14, 22, and 24 months after planting (MAP). The entry, harvest date, and their interaction affected STS and SHQ. Entries OKC 1302 and 12-TSB-1 had greater STS than ‘Patriot’ but less STS than ‘Latitude 36’, ‘Tifway’, ‘Astro’, and ‘TifGrand’. The seeded entry PST-R6T9S had the lowest STS and SHQ. The overall mean STS and SHQ were lowest at 22 MAP, which could be attributed to the slow recovery of the entries after Winter 2014. A strong positive correlation (r = 0.92) between STS and SHQ suggests that SHQ can be used as a rapid field method to estimate suitability for sod harvest. A predictive linear relationship between overall STS and overall SHQ (r 2 = 0.85) found predicted STS values of 8.5, 22.6, 36.8, and 51.0 kg⋅dm–2 for overall mean SHQ ratings of 2, 3, 4, and 5, respectively. The results of this work will help sod producers in cultivar selection and will aid breeders in making commercialization decisions.

Open Access